1 Find the equations of the circles specified as follows:
(a) Centre $(1,-4)$, radius 3 .
(b) Centre $(-1,5)$ and passing through the point $(5,13)$
(c) Passing through the points $\mathrm{P}(3,13)$ and $\mathrm{Q}(-2,1)$ and having PQ as diameter.

2 State the centre and radius of each circle below:
(a) $x^{2}+y^{2}=81$
(b) $x^{2}+y^{2}+8 x-10 y-5=0$
(c) $2 x^{2}+2 y^{2}-4 x+3 y=-\frac{1}{2}$

3 Show that $y=-2 x+10$ is a tangent to the circle $x^{2}+y^{2}+20 y+20=0$.

4 Verify that the point $\mathrm{P}(3,4)$ lies on the circumference of the circle $x^{2}+y^{2}+2 x-4 y-15=0$. Find the equation of the tangent to the circle at P .

5 Find the equation of the circle through the points $\mathrm{A}(2,3), \mathrm{B}(3,2)$ and $\mathrm{C}(2,-1)$.
$6 \quad$ Find possible values of k for which the line $x+y=k$ is a tangent to the circle $x^{2}+y^{2}=2$. Find the coordinates of the point of contact.

7 A symmetrical logo design is based on two circles. Relative to the axes shown, the equation of the larger circle is $x^{2}+y^{2}-20 x-24 y+195=0$.

Find the equation of the smaller circle.

