Collinearity

1. In each question below show whether the given points are collinear or not. Where the points are collinear, state the ratio in which B divides AC.

(a) A(1,2,-3)	B(3,4,-1)	C(4,5,0)	(b) A(4,2,-1)	B(5,3,0)	C(8,6,3)
(c) A(2,0,-1)	B(2,1,-1)	C(2,7,2)	(d) A(1,2,-2)	B(2,1,-2)	C(6,-3,-2)
(e) A(-1,0,4)	B(1,4,2)	C(4,10,-1)	(f) A(6,-3,0)	B(4,-1,2)	C(1,2,5)

2. In each question below show whether the given points are collinear or not. Where the points are collinear state the ratio AB:BC.

(a) A(1,-2,3)	B(3,0,1)	C(8,5,-4)	(b) A(-8,-6,5)	B(-3,4,0)	C(0,10,-3)
(c) A(3,1,-4)	B(5,4,0)	C(9,10,8)	(d) A(-4,-3,6)	B(0,-1,16)	C(6,2,31)

- 3. The points A(3,-1,2), B(5,3,1) and C(11,3p,-2) are collinear. Find the value of p.
- 4. The points P(1,-4,2), Q(a,-6,8) and R(10,-10,b) are collinear. Find the values of a and b.
- 5. Given that M(2,0,-1), Q(4,6,3) and P(5,c,5d) are collinear, find c and d.
- An aeroplane is flying over the North Sea.
 The plane is at position P and can see two oil-rigs Q and R. In relation to a given origin the 3 points have coordinates

P(3,1,4) = Q(5,3,6) = R(8,6,9)

If the plane continues flying in a straight line, will it pass over both Q and R?

 Two pieces of pipe are joined at E, as shown opposite. In relation to a given origin the coordinates of points D, E and F are

 $D(3,1,4) \quad E(6,5,10) \quad F(12,13,22)$

Are the two pieces of pipe joined in a straight line?

