1. Solve each of the following equations for $0^{\circ} \leq x^{\circ} \leq 360^{\circ}$
(a) $\cos 2 x^{\circ}-3 \sin x^{\circ}=2 \sin ^{2} x^{\circ}$
(b) $3 \cos 2 x^{\circ}-2 \sin x^{\circ}-1=0$
2. Solve each of the following equations for $0 \leq \vartheta \leq 2 \pi$
(a) $\cos 2 \vartheta-\cos \vartheta=-1$
(b) $4 \sin 2 \vartheta=5 \sin \vartheta$
3. Given that $\tan A=\frac{3}{4}$ and $\tan B=\frac{5}{12}$, where $\left(A, B<\frac{\pi}{2}\right)$, find the exact value of $\sin (A+B)$.
4. In the diagram, a square has a triangle cut from one corner. The resulting shape $P Q R S T$ is a pentagon.
(a) Calculate the lengths of $P Q, T Q, R S$ and $T R$.
(b) Write down an expression for the size of angle $Q T R$, in terms of a and b.
(c) Show that $\sin Q T R=\frac{33}{65}$.

5. (a) Solve the equation $\cos 2 x^{\circ}=\cos x^{\circ}$ for $0^{\circ} \leq x^{\circ} \leq 360^{\circ}$.
(b) The diagram below shows parts of the graph of two cosine functions, h and k. State expressions for $h(x)$ and $k(x)$.

(c) Use your answers to part (a) to find the coordinates of P and Q .
(d) Hence state the values of x in the interval $0^{\circ} \leq x^{\circ} \leq 360^{\circ}$ for which $\cos 2 x^{\circ}<\cos x^{\circ}$.
