COMPOUND ANGLE FORMULAE

1. Solve each of the following equations for $0^{\circ} \le x^{\circ} \le 360^{\circ}$

(a)
$$\cos 2x^{\circ} - 3\sin x^{\circ} = 2\sin^{2} x^{\circ}$$
 (b) $3\cos 2x^{\circ} - 2\sin x^{\circ} - 1 = 0$

- 2. Solve each of the following equations for $0 \le \vartheta \le 2\pi$ (a) $\cos 2\vartheta - \cos \vartheta = -1$ (b) $4\sin 2\vartheta = 5\sin \vartheta$
- 3. Given that $\tan A = \frac{3}{4}$ and $\tan B = \frac{5}{12}$, where $(A, B < \frac{\pi}{2})$, find the exact value of $\sin(A + B)$.
- **4.** In the diagram, a square has a triangle cut from one corner. The resulting shape *PQRST* is a pentagon.
 - (a) Calculate the lengths of PQ, TQ, RS and TR.
 - (b) Write down an expression for the size of angle QTR, in terms of a and b.

(c) Show that
$$\sin QTR = \frac{33}{65}$$
.

- 5. (a) Solve the equation $\cos 2x^\circ = \cos x^\circ$ for $0^\circ \le x^\circ \le 360^\circ$.
 - (b) The diagram below shows parts of the graph of two cosine functions, *h* and *k*.State expressions for *h*(*x*) and *k*(*x*).

- (c) Use your answers to part (a) to find the coordinates of P and Q.
- (d) Hence state the values of x in the interval $0^{\circ} \le x^{\circ} \le 360^{\circ}$ for which $\cos 2x^{\circ} < \cos x^{\circ}$.

