1 Differentiate the following with respect to x :
(a) $f(x)=3 x^{4}-x^{2}$
(b) $f(x)=\sqrt{x^{3}}$
(c) $y=\frac{1}{4 x^{2}}$
(d) $f(x)=(x+3)(x-2)$
(e) $y=2 \sqrt{x}-\frac{4}{\sqrt{x}}$
(f) $y=\frac{6 x^{3}+2 x}{2 x^{2}}$

2 (a) Find the gradient of the curve $y=2 x^{2}-3 x$ where $x=2$.
(b) Find the equation of the tangent to the curve $y=4-3 x^{2}$, at the point where $x=-1$.

3 The diagram opposite shows a sketch of the cubic function f, with stationary points $(-1,4)$ and $(3,-2)$.

Sketch the graph of the derived function f^{\prime}.

4 Consider the function $y=x^{3}(3-x)$.
(a) Find all points of intersection with the axes.
(b) Find the turning points and determine their nature.
(c) Sketch the curve, clearly showing all salient points.

5 A glass display case is to be constructed as a square based cuboid with an open base.
The volume of the case is $500 \mathrm{~cm}^{3}$.
The case has side $x \mathrm{~cm}$ and height $h \mathrm{~cm}$.
(a) Show that the area of glass required to make the case is given by, $A(x)=x^{2}+\frac{2000}{x} \mathrm{~cm}^{2}$.

(b) Find the dimensions of the case that minimises the area of glass used.

