1 Differentiate: (a) $y=\frac{1}{2} x^{3}-2 \cos x \quad$ (b) $y=(1-2 x)^{3}$

2 Find $\int \frac{4}{\sqrt{(1-2 x))}} d x$

3 Evaluate:
(a) $\int_{-1}^{0}(2 x-3)^{3} d x$
(b) $\int_{0}^{\frac{\pi}{6}} \cos 2 x d x$

4 Determine $f^{\prime}(x)$ when $f(x)=\frac{1}{\sqrt[3]{(1-2 x)^{2}}}$

5 Find the derivative of $\cos 2 x$ in two different ways.

6 An open top water tanker, in the shape of a triangular prism, has a capacity of 108 litres.

The tank is to be lined on the inside in order to make it watertight.

The triangular cross-section of the tank is right-angled and isosceles, with equal sides of length $x \mathrm{~cm}$.

The tank has length of $l \mathrm{~cm}$.

(a) Show that the surface area to be lined, $A \mathrm{~cm}^{2}$, is given by $A(x)=x^{2}+\frac{432000}{x}$.
(b) Find the value of x which minimises this surface area.

