FURTHER CALCULUS

1 Differentiate: (a)
$$y = \frac{1}{2}x^3 - 2\cos x$$
 (b) $y = (1 - 2x)^3$

2 Find
$$\int \frac{4}{\sqrt{(1-2x)}} dx$$

3 Evaluate: (a)
$$\int_{-1}^{0} (2x-3)^3 dx$$
 (b) $\int_{0}^{\frac{\pi}{6}} \cos 2x dx$

4 Determine
$$f'(x)$$
 when $f(x) = \frac{1}{\sqrt[3]{(1-2x)^2}}$

- 5 Find the derivative of $\cos 2x$ in two different ways.
- 6 An open top water tanker, in the shape of a triangular prism, has a capacity of 108 litres.

The tank is to be lined on the inside in order to make it watertight.

The triangular cross-section of the tank is right-angled and isosceles, with equal sides of length *x*cm.

The tank has length of *l*cm.

- (a) Show that the surface area to be lined, $A \text{ cm}^2$, is given by $A(x) = x^2 + \frac{432000}{x}$.
- (b) Find the value of *x* which minimises this surface area.