Further Calculus

Differentiation

1. Differentiate
(a) $y=(4 x-2)^{3}$
(b) $y=\sqrt{6 x-2}$
(c) $f(x)=\frac{2}{5 x+2}$
(d) $y=3 \sin 2 x$
(e) $f(x)=\cos ^{2} x+2 \sin 4 x$
2. $f(x)=2 \cos 2 x-\sin 4 x$. Show that $f^{\prime}\left(\frac{\pi}{6}\right)=2(1-\sqrt{3})$
3. $f(x)=(2+\cos x)^{3}$. Show that $f^{\prime}\left(\frac{\pi}{2}\right)=-12$
4. $\mathrm{y}=\sqrt{27+\mathrm{x}^{2}}$. Find the value of $\frac{\mathrm{dy}}{\mathrm{dx}}$ when $\mathrm{x}=3$.
5. $f(x)=(9 x-1)^{\frac{1}{3}}$. Find $f^{\prime}(1)$.
6. Find the equation of the tangent to the curve $\mathrm{y}=\sqrt{6 \mathrm{x}-2}$ at the point A , where $\mathrm{x}=1$.

7. Find the equation of the tangent to the curve $\mathrm{y}=\frac{4}{3 \mathrm{x}+4}$ at the point where $\mathrm{x}=-2$.
8. Find the points, A and B , on the curve

$$
y=\frac{-9}{x+4}
$$

where the tangents to the curve are parallel to the line $\mathrm{y}=\mathrm{x}$.

9. Find the equation of the tangent to the curve $y=2 \sin \left(x-\frac{\pi}{6}\right)$ at the point where $x=\frac{\pi}{3}$.
10. Find the equation of the tangent to the curve $y=4 \cos \left(2 x-\frac{\pi}{6}\right)$ at the point where $x=\frac{\pi}{2}$
11. The curve $\mathrm{y}=(2 \mathrm{x}-8)^{3}-24 \mathrm{x}$ has stationary points at P and Q . Find the coordinates of P and Q .

12. (a) Show that the curve $y=2 \sin 2 x-4 x$ is never increasing.
(b) Determine the coordinates of the stationary points of this curve in the interval $0 \leq \mathrm{x} \leq 180$.

Integration

13. Integrate
(a) $\int(2 x-4)^{3} d x$
(b) $\int \sqrt{6 x+1} d x$
(c) $\int \frac{6}{(1-3 x)^{2}} d x$
(d) $\int \sin (4 x-2) d x$
(e) $\int 4 \cos (2 x+1) d x$
14. Evaluate (a) $\int_{0}^{2} \sqrt{4 x+1} d x$
(b) $\int_{1}^{2} \frac{8}{(1-2 x)^{3}} d x$
15. $\frac{d y}{d x}=10(2 x-1)^{4}$ and the curve passes through the point $(1,6)$. Find a formula for y.
16. $\frac{d y}{d x}=\frac{1}{\sqrt{2 \mathrm{x}-4}}$ and the curve passes through the point $(10,3)$. Find a formula for y .
17. $\frac{d y}{d x}=3 \sin 2 x$. This curve passes through the point $\left(\frac{5}{12} \pi, \sqrt{3}\right)$. Find a formula for y .
18. $\frac{d y}{d x}=10 \cos 5 x$. This curve passes through the point $\left(\frac{\pi}{6}, 4\right)$. Find y.
19. The diagram shows part of the graph of

$$
y=\frac{1}{(2 x-4)^{2}}
$$

Calculate the shaded area.

20. The diagram shows part of the graph of

$$
y=\frac{1}{\sqrt{4 x-3}}
$$

Calculate the shaded area.

21. The diagram shows part of the graph of $y=3 \sin 4 x$.

Calculate the shaded area.

22. The diagram below shows part of the graphs of $y=\sin 2 x$ and $y=\cos x$.

(a) Find the x -coordinates of A and B .
(b) Calculate the shaded area.

