Higher Factor Theorem.

1. $f(x)=x^{3}-x^{2}-5 x-3$
(a) (i) Show that $(x+1)$ is a factor of $f(x)$
(ii) Hence or otherwise factorise $f(x)$ fully
(b) One of the turning points of the graph of $y=f(x)$ lies on the x-axis. Write down the coordinates of this turning point.
2. Factorise $2 x^{3}-7 x^{2}+4 x+4$
3. Find k if $(x-2)$ is a factor of $x^{3}+k x^{2}-4 x-12$
4. Express $x^{4}-x$ in its fully factorised form
5. When $f(x)=2 x^{4}-x^{3}+p x^{2}+q x+12$ is divided by $(x-2)$, the remainder is 114 .

One factor of $f(x)$ is $(x+1)$.
Find the values of p and q.

