Higher Factor Theorem.

1. $f(x) = x^3 - x^2 - 5x - 3$

(a)	(i) Show that $(x + 1)$ is a factor of $f(x)$	
	(ii) Hence or otherwise factorise $f(x)$ fully	(5)

- (b) One of the turning points of the graph of y = f(x) lies on the x axis. Write down the coordinates of this turning point. (1)
- 2. Factorise $2x^3 7x^2 + 4x + 4$ (3)
- 3. Find k if (x-2) is a factor of $x^3 + kx^2 4x 12$ (3)
- 4. Express $x^4 x$ in its fully factorised form (3)
- 5. When $f(x) = 2x^4 x^3 + px^2 + qx + 12$ is divided by (x 2), the remainder is 114. One factor of f(x) is (x + 1). Find the values of p and q. (5)

TOTAL (20)