1.

Given that $\tan x^{\circ} = \frac{1}{3}$, then the length, in centimetres, of PQ is

- **A** $\frac{3}{10}$
- B √10
- $C \qquad \frac{\sqrt{10}}{3}$
- D $\frac{4}{3}$
- 2. For varying values of p the equation y-1=p(x-1) is the equation of a line. All such lines.
 - A have the same gradient
 - B cut the x-axis at the same point
 - C cut the y-axis at the same point
 - D pass through a fixed point not on the axes.
- 3. Which of the following belong(s) to the set $L \cup M$ where

L =
$$\{(x, y): x + 2y = 3, x, y \in R\}$$
?
and
M = $\{(x, y): x < 4, x, y \in R\}$?

- 1. (-5, 3)
- 2. (5, -1)
- 3. (1, 3)
- A (1), (2) and (3)
- B (1) and (3) only
- C (1) and (2) only
- D (3) only

- 4. Given that n = s(s+1)(s+2) where s is a positive integer, which of the following must be true?
 - (1) n is even
 - (2) n is a multiple of 3
 - (3) n is a multiple of 4
 - A (1) only
 - B (2) only
 - C (1) and (2) only
 - D (1) and (3) only
- 5. Given that $f(x) = \sin x$, then f(x) is defined as the limit as h tends to 0 of
 - $A \quad \frac{\sin x + \sin h \sin x}{h}$
 - $\mathsf{B} \quad \frac{\sin\left(x+\,\mathrm{h}\right)-\sin\,x}{h}$
 - $C = \frac{\sin x \sin(x + h)}{h}$
 - $D \qquad \frac{\sin(x+h) \sin h}{h}$
- 6. For all x except -1, 0 and 1,
 - $\frac{1 \frac{1}{x}}{\frac{1}{x}}$ equals
 - $x \frac{1}{x}$
 - $A \qquad \frac{1}{x}$
 - $\mathsf{B} \qquad \frac{1}{x+1}$
 - $C = \frac{1}{x-1}$
 - D x + 1
- 7. The minimum value of $4 \cos \left[\theta \frac{\pi}{3}\right]$ is
 - A -4
 - B 4
 - *C* 1
 - D -1

- 8. A right pyramid has a square base of side 4cm and a perpendicular height of 2cm. The length of a slant edge, in centimetres, is
 - *A* √6
 - B √10
 - *C* √12
 - D √20
- 9. Two similar rectangles have their areas in the ratio 1:4. The longer side of the smaller rectangle and the shorter side of the larger rectangle are each 30cm. The area, in square centimetres, of the larger rectangle is
 - A 3600
 - B 1800
 - *C* 900
 - D 450
- 10. $\frac{2\sqrt{2}}{\sqrt{6}+2}$ equals
 - A $\frac{1}{2}(\sqrt{3} 1)$
 - B √3 √2
 - $C \qquad \sqrt{3} + \sqrt{2}$
 - D $2(\sqrt{-\sqrt{2}})$