1.

Given that $\tan x^{\circ}=1 / 3$, then the length, in centimetres, of $P Q$ is

A $\frac{3}{10}$
B $\quad \sqrt{ } 10$
C $\quad \frac{\sqrt{ } 10}{3}$

D $\frac{4}{3}$
2. For varying values of p the equation $y-1=p(x-1)$ is the equation of a line. All such lines.

A have the same gradient
B cut the x-axis at the same point
C cut the y-axis at the same point
D pass through a fixed point not on the axes.
3. Which of the following belong(s) to the set $L \cup M$ where
$L=\{(x, y): x+2 y=3, x, y \in R\} ?$
and
$M=\{(x, y): x<4, x, y \in R\}$?

1. $(-5,3)$
2. $(5,-1)$
3. $(1,3)$

A (1), (2) and (3)
B (1) and (3) only
C (1) and (2) only
D (3) only
4. Given that $n=s(s+1)(s+2)$ where s is a positive integer, which of the following must be true?
(1) n is even
(2) n is a multiple of 3
(3) n is a multiple of 4

A (1) only
B (2) only
C (1) and (2) only
D (1) and (3) only
5. Given that $f(x)=\sin x$, then $f^{\prime}(x)$ is defined as the limit as h tends to 0 of

A $\frac{\sin \mathrm{x}+\sin \mathrm{h}-\sin \mathrm{x}}{h}$
B $\frac{\sin (x+h)-\sin x}{h}$
C $\frac{\sin \mathrm{x}-\sin (x+h)}{h}$
D $\frac{\sin (\mathrm{x}+\mathrm{h})-\sin h}{h}$
6. For all x except $-1,0$ and 1,
$1-\frac{1}{x}$
$\frac{x}{x-\frac{1}{x}}$ equals
$x-\frac{1}{x}$
A $\frac{1}{x}$
B $\frac{1}{x+1}$
C $\frac{1}{x-1}$
D $\quad x+1$
7. The minimum value of $4 \cos \left[\theta-\frac{\pi}{3}\right]$ is

A -4
B 4
C 1
D -1
8. A right pyramid has a square base of side 4 cm and a perpendicular height of 2 cm . The length of a slant edge, in centimetres, is

A $\sqrt{ } 6$

B $\sqrt{ } 10$

C $\quad \sqrt{ } 12$

D $\quad \sqrt{20}$
9. Two similar rectangles have their areas in the ratio 1:4. The longer side of the smaller rectangle and the shorter side of the larger rectangle are each 30 cm . The area, in square centimetres, of the larger rectangle is

A 3600

B 1800

C 900

D 450
10. $\frac{2 \sqrt{ } 2}{\sqrt{6}+2}$ equals

A $\quad \frac{1}{2}(\sqrt{ } 3-1)$
B $\quad \sqrt{ } 3-\sqrt{2}$
C $\quad \sqrt{ } 3+\sqrt{ } 2$

D $\quad 2(\sqrt{ }-\sqrt{ } 2)$

