1.

PQRS is a horizontal square and TSR an equilateral triangle in a vertical plane. L is the mid-point of $S R$ and K the mid-point of $Q R$. The angle between PT and plane PQRS is angle

A TPQ
B TPK
C TPR
D TPL
2. Given that $f(x)=\frac{1}{x^{\prime}}, f^{\prime}(x)$ is defined as the limit as $h \rightarrow 0$ of

A $\frac{\frac{1}{x}+h-\frac{1}{x}}{h}$
B $\frac{1}{x+h}-\frac{1}{x}$
h
C $\frac{\frac{1}{x}+\frac{1}{h}-\frac{1}{x}}{h}$
D $\frac{\frac{1}{x}-\frac{1}{h}-\frac{1}{x}}{h}$
3. $\cos (90-x)^{\circ}$ equals

A $\quad \cos x^{\circ}$
B $\quad-\cos x^{\circ}$
C $\quad \sin x^{\circ}$
D $\quad-\sin x^{\circ}$
4.

KLMPQR is a right equilateral triangular prism. S and T are the mid-points of LQ and PQ respectively. The angle between RK and plane KLQP is angle

A RKL
B RKS
C RKQ
D RKT
5. Which of the following is/are true for the line with equation $2 y=3 x-5$?
(1) It has gradient 3 .
(2) It passes through the point $(1,-1)$.
(3) It is parallel to the line with equation $4 y=6 x-5$.

A (1) only
B (2) only
C (3) only
D Some other combination of (1),
(2) and (3)
6. The equation of the line joining the points $(1,2)$ and $(5,3)$ can be written as

A $\quad 4 x-y-2=0$
B $\quad 4 x+y-6=0$
C $\quad x-4 y+7=0$
D $\quad x-4 y-17=0$
7. $f: x \rightarrow 2 x-3$ and $g: x \rightarrow 2 x^{2}-3$;
($g \circ f$) (x) equals
A $\quad 4 x^{2}-6$
B $\quad 8 x^{2}-12 x+6$
C $\quad 8 x^{2}-24 x+6$
D $8 x^{2}-24 x+15$
8.

The above diagram is most likely to be part of the graph of

A $\quad 1+\sin x^{\circ}$
B $\quad 2 \cos x^{\circ}-1$
C $\quad 1-\sin x^{\circ}$
D $\quad 2-\cos x^{\circ}$
9. The equation of the straight line through the points $(1,-2)$ and $(-3,4)$ is

A $\quad 3 x+2 y=-1$
B $\quad 3 x-2 y=7$
C $\quad 2 x+3 y=-4$
D $\quad 2 x-3 y=8$
10.

The above graph is most likely to be part of the graph of the function $f: x \rightarrow$

A $\quad \sin (x+45)^{\circ}$
B $\quad \sin (x-45)^{\circ}$
C $\quad \sin (45-x)^{\circ}$
D $\quad-\sin (x+45)^{\circ}$

