1. If f^{-1} is the inverse of the function $f: x \rightarrow \frac{1}{x+2}, x \neq-2$, then $f^{-1}(x)$ equals

A $\frac{1}{x+2}, x \neq-2$
B $\frac{1}{x+2}, x \neq 2$
C $\frac{1}{2-x}, x \neq 2$
D $\frac{1-2 x}{x}, x \neq 0$
2. The straight lines with equations ay $=3 x+7$ and $y=5 x+2$ are perpendicular. The value of a is

A $-\frac{1}{5}$
B $-\frac{3}{5}$
C- $\frac{5}{3}$
D - 15
3. The least period of $\sin 2 x^{\circ}$ is

A 45

B 90

C 180

D 360
4. Given that $f(x)=3 \sqrt{ } x, x>0$, then $f^{1}(4)$ equals

A $\frac{3}{4}$
B $\quad \frac{3}{2}$
C 3
D 16
5. The graph of $y=\log _{10} x$ lies entirely

A in the first quadrant

B above the x-axis
C below the x-axis

D to the right of the y-axis
6. Which of the following statements is/are true for the lines $2 x-y+8$
$=0$ and $x-2 y+4=0$?
(i) They are perpendicular
(ii) They cut the x-axis at the same point.
(iii) They cut the y-axis at the same point.

A (i) only

B (ii) only
C (iii) only
D (i) and (ii) only
7. The number of elements in the solution set of $\sin x^{\circ}=1$, where $x \varepsilon R$ and $-360 \leq x \leq 720$, is

A 0

B 1

C 2

D 3
8. Functions f and g are defined by $f(x)=1-2 x$ and $g(x)=x^{2}$ with domain R in each case. The value of $\left(f^{\circ} g\right)(-1)$ is

A 4
B 3

C 1
D -1
9. Given that $g(x)=\frac{x^{3}-1}{2} \quad x \in R$, then $g^{-1}(x)$ equals.

A $\frac{2}{x^{3}-1}$
B $\quad \sqrt[3]{ }(2 x+1)$

C $\quad 2^{\sqrt[3]{ }} x+1$
D $\quad 2^{\sqrt[3]{ }}(x+1)$
10. A straight line passing through the point $(0,3)$ is perpendicular to the line $x-2 y-5=0$. Its equation is

A $y+2 x-3=0$
B $\quad y+2 x+3=0$
C $\quad y-2 x-3=0$

D $2 y+x-6=0$

