1. Which of the following is the equation of a line perpendicular to the line x+3y+4=0

$$A y = 3x$$

$$B \qquad y = \frac{1}{3}x$$

$$C \qquad y = -\frac{1}{3}x$$

$$D y = -x$$

2. Given that $f: x \rightarrow 2x$, $g: x \rightarrow 3 - 5x$, then $(g \circ f)^{-1}$ maps x onto

$$C \qquad \frac{1}{10} (3 - x)$$

D
$$\frac{1}{10}(6-x)$$

3. $A = 2\pi r^2 + 6\pi r$. The rate of change of A with respect to r, when r = 2, is

A
$$10\pi$$

4. The graph of $y = \frac{1}{2} \log_{10} x$ cuts the x-axis at

5. The line 2y = 3x + 6 meets the y-axis at C. The gradient of the line joining C to A (4, -3) is

$$C - \frac{2}{3}$$

D
$$-\frac{3}{2}$$

6. The range of the function $f: x \to \sin 2x$, $x \in R$, where R is the set of real numbers,

D
$$[0, 2\pi]$$

7. For which real values of x is the function $f: x \to \frac{1}{\sqrt{(1-x^2)}}$ defined on the set of real numbers

A All
$$x$$
 except $x = 1$ and $x = -1$

B
$$x > 1$$
 only

$$C x < 1$$
 only

D
$$-1 < x < 1$$
 only

8. Which of the following sketches is most likely to show the graph of $y = \cos 2x^{\circ}$ for $0 \le x \le 360$?

Α

В

C

D

9. Which of the graphs (i), (ii), (iii) could be that of a function f such that f(1) > 0, f(3) > 0 and f(2) = 0?

- A (i) only
- B (ii) only
- C (iii) only
- D (i), (ii) and (iii)
- 10. The image of the curve $y = \cos x$ under a half-turn about the origin is
 - $A y = \cos x$
 - $B y = \cos(-x)$
 - $C y = -\cos x$
 - D $y = \sin x$