1. Which of the following is most likely to be the graph of
$y=\sin \left(\frac{x}{2}\right]^{\circ}, 0 \leq x \leq 360 ?$

A

B

C

D

2.

The diagram could illustrate, for $-2 \leq x \leq 3$, the graph of the function $f: x \rightarrow$

A 1

$$
x
$$

B

$$
\frac{1}{x+1}
$$

C $\quad x^{2}+1$
D $\quad 2^{x}$
3. The derivative of $\frac{3}{x^{2}}, x \neq 0$, is

A

$$
\frac{3}{2 x}
$$

B

$$
-\underline{6}
$$

C $\frac{-1}{6 x^{3}}$

$$
D \quad \frac{-6}{x^{3}}
$$

4. If $f: x \rightarrow 3 x-2$ and $g x \rightarrow \frac{1}{3} x+1$ are functions from R to R then $(f \circ g)^{-1}$ maps x to

A $\frac{1}{3}(3 x-1)$
B $\quad x-1$
C $1-x$
D $\quad x+1$
5. Given that the line joining the points $(2,3)$ and $(8, k)$ is perpendicular to the line $2 y-3 x+5=0$, then the value of k is

A -1
B -2
C $\quad-3$
D $\quad-4$
6. $\quad \mathrm{P}$ is a variable point $(2 t, 4 t-6)$.

The locus of the mid point of $O P$ where O is the origin has equation

A $y=x-3$
B $\quad y=x-6$
C $\quad y=2 x-3$
D $\quad y=2 x-6$
7. In how many points does the graph of $f: x \rightarrow \cos 4 x^{\circ}, 0 \leq x<360$, cut the x-axis?

A 1
B 2
C 4
D 8
8. Which one of the following is the inverse of $f(x)=x-2$, where $x \in R$?

A $\frac{1}{x-2}$

B $\quad-\frac{1}{x-2}$

C $\quad 2 x+1$

D $x+2$
9. Which of the following is true for all lines with equations of the form $a x+3 y-6=0$ where $a \varepsilon R$, where R is the set of real numbers?
(1) They have the same gradient.
(2) They cut the x-axis at the same point
(3) They cut the y-axis at the same point

A (1), (2) and (3)
B (1) only
C (2) only
D (3) only
10. The tangent to the curve $y=x^{2}+3 x+5$ at the point $(1,9)$ has gradient

A 2
B 5
C $\quad 10$
D 21

