MATHS HIGHER - WORKSHEETS

 Which of the following is most likely to be the graph of

2.

- The diagram could illustrate, for -2 $\leq x \leq 3$, the graph of the function $f: x \rightarrow$
- $A \qquad \frac{1}{x}$ $B \qquad \frac{1}{x+1}$ $C \qquad x^{2}+1$

2^{*x*}

D

3. The derivative of $\frac{3}{x^2}$, $x \neq 0$,

$$A \qquad \frac{3}{2x}$$
$$B \qquad \frac{-6}{x}$$
$$C \qquad \frac{-1}{6x^3}$$
$$D \qquad \frac{-6}{X^3}$$

is

- 4. If $f: x \to 3x 2$ and $g \to \frac{1}{3}x + 1$ are functions from R to R 3 then $(f \circ g)^{-1}$ maps x to
 - $A = \frac{1}{3}(3x 1)$ B = x - 1 C = 1 - x D = x + 1
- 5. Given that the line joining the points (2, 3) and (8, k) is perpendicular to the line 2y 3x + 5 = 0, then the value of k is
 - A -1 B -2 C -3
 - D -4
- 6. P is a variable point (2*t*, 4*t* 6).
 The locus of the mid point of
 OP where O is the origin has equation

MATHS HIGHER - WORKSHEETS

- 7. In how many points does the graph of $f: x \rightarrow \cos 4x^{\circ}, 0 \le x \le 360$, cut the x-axis ?
 - A 1
 - B 2
 - C 4
 - D 8

8. Which one of the following is the inverse of f(x) = x - 2, where $x \in R$?

- A <u>1</u> x-2
- $B \frac{1}{x-2}$
- *C* 2*x*+1
- D x+2
- 9. Which of the following is true for all lines with equations of the form ax + 3y 6 = 0 where $a \in R$, where R is the set of real numbers?
 - (1) They have the same gradient.
 - (2) They cut the x-axis at the same point
 - (3) They cut the *y*-axis at the same point
 - A (1), (2) and (3)
 - B (1) only
 - C (2) only
 - D (3) only

- 10. The tangent to the curve $y = x^2 + 3x + 5$ at the point (1, 9) has gradient
 - A 2
 - B 5
 - C 10 D 21