1.

In the diagram the sum of the two shaded areas is:

A

$$
\int_{0}^{a}(f(x)-x) d x+\int_{a}^{b}(f(x)-x) d x
$$

B

$$
\int_{0}^{0}(f(x)-x) d x
$$

C

$$
\int_{0}^{a}(f(x)-x) d x+\int_{a}^{b}(x-f(x)) d x
$$

$2 \int_{0}^{a}(f(x)-x) d x$
$E \quad \int_{0}^{b}(x-f(x)) d x$
2. Given that k is a constant of integration then for
$x>0, \int\left(1-x^{\frac{-3}{2}}\right) d x$ equals
A $2 x^{-\frac{1}{2}}+k$
B $\quad x-2 x^{\frac{1}{2}}+k$
C $x+2 x^{-\frac{1}{2}}+k$
D $x-2 x^{\frac{1}{2}}+k$
E $\quad x-\frac{1}{2} x^{\frac{1}{2}}+k$
3.

The diagram shows the graph of the function $f x \rightarrow p x^{2}+r$. Which of the following statements about p and r is true?

A $\quad p>0, r>0$
B $\quad p>0, r<0$
C $\quad p<0, r>0$
D $\quad p<0, r<0$
E There is insufficient information to determine which is true.
4. The locus of the points equidistant from the centres of the circles whose equations are
$x^{2}+y^{2}+2 x+2 y-7=0$ and
$x^{2}+y^{2}=4$ has equation

A $\quad x+y=-2$
B $\quad x+y=-1$
C $\quad x+y=1$
D $\quad x+y=2$
E $\quad x+y=0$
5. Given that the circle
$x^{2}+y^{2}-11 x-10 y+24=0$
cuts the y-axis at the points P and Q,
then the length of $P Q$ is

A 2
B 5
C 10
D 11
E 14

MATHS HIGHER - WORKSHEETS

6. Given that $0 \leq x<2 \pi$, in how many points, not lying on the x-axis, does the graph of $y=\sin x$ intersect the graph of $y=\sin 2 x$?

A 0
B 1
C 2
D 4
E 8
7. Given that $\int_{0}^{p} x^{2} d x=\frac{64}{3}$, then the
value of p is

A $\frac{8 \sqrt{ } 3}{3}$
B $\frac{32}{3}$
C 4
D $\quad-4$
E indeterminable
8. $\sin (90+\theta)^{\circ}+\cos \theta^{\circ}$ equals $\cos \theta)^{\circ}$

A 0
B 2
C $2-\tan \theta^{\circ}$
D $\quad \sin \theta^{\circ}+1$
E $\quad 1+\cos \theta^{\circ}$
9. Given that $\sin \theta=k$, where $0 \leq \theta<\frac{\pi}{2}$, then $\sin 2 \theta$ equals

A $2 k$
B $\quad 2 k J\left(1-k^{2}\right)$
C $\quad 2 k N\left(1+k^{2}\right)$
D $\quad 2 k^{2}-1$
E $\quad 2 k^{2}+1$
10.

The equation of the curve is $y=f(x)$. Area $P=5$ square units, and area $Q=3$ square units.
Which of the following is/are true?
(1) $\int_{0}^{2} f(x) d x=5$
(2) $\int_{0}^{3} f(x) d x=8$
(3) $\int_{0}^{3} f(x) d x=3$

A (1) only
B (2) only
C (3) only
D (1), (2) and (3)
E some other combination of
(1), (2) and (3)

