1.

The functions f and g are such that $f(a)=g(a)=0, \quad f(c)=g(c) \quad$ and $f(b)=0$.
The shaded area is given by

A

$$
\int_{a}^{c}(f(x)-g(x)) d x
$$

B

$$
\int_{a}^{c}(f(x)+g(x)) d x
$$

C

$$
\begin{aligned}
& \int_{a}^{b}(f(x)-g(x)) d x+ \\
& \int_{b}^{c}(f(x)+g(x)) d x
\end{aligned}
$$

D

$$
\begin{aligned}
& \int_{a}^{b}(f(x)-g(x)) d x- \\
& \int_{b}^{c}(f(x)+g(x)) d x+
\end{aligned}
$$

E

$$
\begin{aligned}
& \int_{a}^{b}(f(x)-g(x)) d x- \\
& \int^{c}(f(x)+g(x)) d x+
\end{aligned}
$$

2. Given that $\cos 2 x=p$, then $\cos ^{2} x$ equals

A $\quad \frac{1}{2}(1+p)$
B $\quad \frac{1}{2}(1-p)$
C $\quad \frac{1}{2}(p-1)$
D $\quad \frac{1}{2} p$
E $\quad \frac{1}{4} p^{2}$
3. Given that k is a constant of integration, then
$\int \frac{1}{x^{2}} d x$ equals
A $\frac{-1}{x}+k$
B $\frac{-1}{2 x}+k$
c $\frac{-1}{x^{3}}+k$

D $\frac{-2}{x^{3}}+k$
E $\quad \frac{-1}{3 x^{3}}+k$
4. Which of the following is/are solutions of $\sin 2 x=1, x \in R$?
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{4}$
(3) $\frac{3 \pi}{4}$
(4) $\frac{5 \pi}{6}$

A (1) only
B (2) only
C (2) and (3) only
D (1) and (4) only
$E \quad$ none of (1), (2), (3) and (4)
5. Given that k is a constant of integration, then $\int(x-1)^{2} d x$ equals.
A $2(x-1)+k$
B $\quad \frac{1}{2}(x-1)^{2}+k$
C $\quad \frac{1}{3}(x-1)^{3}+k$
D $\quad \frac{1}{2}(x-1)^{2}\left(\frac{1}{2} x^{2}-x\right)+k$
E $\quad \frac{1}{3}(x-1)^{3}\left(\frac{1}{2} x^{2}-x\right)+k$
6. The centre of the circle $3 x^{2}+3 y^{2}-$ $6 x+9 y+1=0$ is the point.

A $\left(3,-\frac{9}{2}\right)$
B $\quad(-2,3)$
C $\quad(2,-3)$
D $\quad\left(2,-\frac{3}{2}\right)$
E $\quad\left(-1, \frac{3}{2}\right)$
7. For the quadratic equation $x^{2}+(p+2) x+p=0$, where $p \varepsilon R$, which of the following statements is/are true?
(1) The roots are always real.
(2) The roots are equal only if $p=-2$.
(3) The roots are rational if $p=1$.

A (1) only
B (2) only
C (3) only
D (1), 2) and (3)
E Some other combination of responses.
8. In which quadrant(s) can a point on the circumference of the circle

$$
(x-4)^{2}+(y+3)^{2}=5
$$

lie?

A The second only
B The fourth only
C The first, second and third only
D The first, third and fourth only
E Any quadrant
9.

Which of the following functions could be represented by the above graph?
(1) $f: x \rightarrow x(x+2)(x-1)$
(2) $f: x \rightarrow x(x-2)(x+1)$
(3) $f: x \rightarrow 2 x(x-2)(x+1)$
(4) $f: x \rightarrow 2 x(x+2)(x-1)$

A (1) only
B (2) only
C (2) and (3) only
D (1) and (4) only
E (3) and (4) only

