1. Which of the graphs below is most likely to show the function $f: x \to x^3$, $x \in R$?

2. Given that $f'(x) = 2x - \frac{4}{x^2}$ and f(-1) = 2, then f(x) equals

$$A \qquad \frac{8}{x^3} - 8$$

$$B \qquad \frac{8}{x^3} + 8$$

$$C x^2 + \frac{8}{x^3} + 9$$

D
$$x^2 + \frac{4}{x} + 5$$

$$E x^2 + \frac{4}{x} + 7$$

3.

The area enclosed by the curves $y = x^2$ and $y = 4 - x^2$ (represented in the diagram by the shaded region) is given by

$$A \int_{0}^{4} (4-2x^2) dx$$

B
$$\int_{-2}^{2} (4-2x^2) dx$$

$$C \int_{-\sqrt{2}}^{\sqrt{2}} (4-2x^2) dx$$

D
$$\int_{-\sqrt{2}}^{\sqrt{2}} (2x^2 - 4) dx$$

$$\mathsf{E} \quad \int_{-2}^{2} 4 \ dx$$

4. As x increases in the interval

$$\pi < x < \frac{3\pi}{2} \pi$$
, $\sin x$

A increases as cos x decreases

B decreases as cos x increases

C increases as $\cos x$ increases

D decreases as cos x decreases

E equals cos

- 5. The circle $x^2 + y^2 + 11x + 7y = 10 = 0$ cuts the x-axis at the points P and Q. The length of PQ is
 - A 1
 - В 3
 - *C* 7
 - D 9

11

Ε

- 6. The sum of the roots of the equation $3x^2 5x + 7 = 0$ is
 - $A \qquad \frac{7}{3}$
 - B <u>5</u>
 - $C \frac{5}{3}$
 - D $-\frac{7}{3}$
 - E None of these values.
- 7. Given that k is a constant of integration, $\int x^{1/2} dx$ equals.
 - $A \qquad \frac{1}{2x^{\frac{1}{2}}} + k$
 - B $\frac{1}{x^{\frac{1}{2}}} + k$
 - $C \qquad \frac{1}{2}x^{3/2} + k$
 - D $\frac{2}{3}x^{3/2} + k$
 - E ${}^{3}/_{2}x^{3}/_{2} + k$

8. Given that the point $(p \sin \theta, p \cos \theta)$ lies on the circle

 $x^2 + y^2 = 16$, and p > 0, then p equals

- A 1
- B 2
- C 4
- D 8
- E 16

MATHS HIGHER - WORKSHEETS	