1. Which of the graphs below is most likely to show the function $f: x \rightarrow x^{-3}, x \in R$?

2. Given that $f^{\prime}(x)=2 x-\frac{4}{x^{2}}$ and $f(-1)=2$, then $f(x)$ equals

A $\frac{8}{x^{3}}-8$
B $\quad \frac{8}{x^{3}}+8$
c $x^{2}+\frac{8}{x^{3}}+9$
D $x^{2}+\frac{4}{x}+5$
E $\quad x^{2}+\frac{4}{x}+7$
3.

The area enclosed by the curves $y=x^{2}$ and $y=4-x^{2}$ (represented in the diagram by the shaded region) is given by

A $\int_{0}^{4}\left(4-2 x^{2}\right) d x$
B $\int_{-2}^{2}\left(4-2 x^{2}\right) d x$
c $\int_{-\sqrt{ } 2}^{\sqrt{2}}\left(4-2 x^{2}\right) d x$
D $\int_{-\sqrt{2}}^{\sqrt{2}}\left(2 x^{2}-4\right) d x$
E $\int_{-2}^{2} 4 d x$
4. As x increases in the interval
$\pi<x<\frac{3 \pi}{2} \pi, \sin x$
A increases as $\cos x$ decreases
B decreases as $\cos x$ increases
C increases as cos x increases
D decreases as $\cos x$ decreases
E equals cos
5. The circle $x^{2}+y^{2}+11 x+7 y=10=0$ cuts the x-axis at the points P and Q . The length of $P Q$ is

A 1
B 3
C 7
D 9
E 11
6. The sum of the roots of the equation $3 x^{2}-5 x+7=0$ is

A $\frac{7}{3}$
B $\frac{5}{3}$
C $-\frac{5}{3}$
D $-\frac{7}{3}$
E None of these values.
7. Given that k is a constant of integration, $\int x^{1 / 2} d x$ equals.

A $\frac{1}{2 x^{\frac{1}{2}}}+k$
B $\quad \frac{1}{x^{\frac{1}{2}}}+k$
C $\quad \frac{1}{2} x^{3 / 2}+k$
D $\quad 2 / 3 x^{3 / 2}+k$

E $\quad 3 / 2 x^{3 / 2}+k$
8. Given that the point $(p \sin \theta, p \cos \theta)$ lies on the circle
$x^{2}+y^{2}=16$, and $p>0$, then p equals
A 1
B 2
C 4
D 8
E 16

