MATHS HIGHER - WORKSHEETS

Which graph is most likely to be the graph of $f(x) = 3x^2 - 2x + 4$.

Four circles, each of unit radius, are placed touching each other as shown. The radius of the circumscribing circle is

A 1 + $\sqrt{2}$ B 2 $\sqrt{2}$

2.

- B $2\sqrt{2}$ C $2 + \sqrt{2}$
- D $1 + 2\sqrt{2}$
- E 2 + 2√2
- 3. Given that k is a constant of integration $\int \frac{dx}{x^4}$ equals

A - + k
B
$$\frac{1}{3x^3}$$
 + k
C $\frac{3}{x^3}$ + k
D $\frac{3}{3x^3}$ + k
E $\frac{1}{5x^5}$ + k
 $\frac{5}{x^5}$

- Which of the following is/are factors of: 2x³ - 11 x² - 23x + 14?
 - [1] 2x 1[2] x - 3[3] x + 7A (1) only B (2) only C (3) only D (1) and (3) only
 - E none of (1), (2) and (3)

Unit 2

MATHS HIGHER - WORKSHEETS

5.

- $\begin{array}{c} C & \frac{1}{2} \\ D & \frac{1}{\sqrt{5}} \\ E & \frac{1}{3} \end{array}$
- 6. The image of the circle $x^2 + y^2 = 1$ after reflection in the line x + y = 1 is

A
$$(x+1)^{2} + (y+1)^{2} = 1$$

B $(x-1)^{2} + (y-1)^{2} = 1$
C $x^{2} + y^{2} = 2$
D $x^{2} + y^{2} = 1$
E $(x-1)^{2} + (y-1)^{2} = 3$

- 7. In which quadrant(s) can a point on the circumference of the circle $(x-4)^2 + (y+3)^2 = 5$ lie?
 - A The second only
 - B The fourth only
 - C The first, second and third only
 - D The first, third and fourth onlyE Any guadrant
- 8. Given that $f(x) = x^n 1$, where *n* is a positive integer, then x + 1 is a factor of f(x) for
 - A All values of n
 - B No value of *n*
 - C All even values of *n* only
 - D All odd values of *n* only
 - E n = 2 only

 Two non-congruent triangles PQR and LMN are equal in area and are such that PQ = LM and PR = LN.

Angle P must equal

Α	180° - angle L
В	90° - angle L
С	90° + angle L
D	angle L
Е	angle L - 90°

10.
$$\int_{1}^{2} x^{4} dx equals$$

A	32
В	28
С	15 31
D	<u>31</u> 4
E	$\frac{31}{5}$

MATHS HIGHER - WORKSHEETS