none of these

F

The functions *f*, *q*, *h* are such that 1. 5. Given that the circle $f'(x) = q'(x) = h'(x), x \in R$, the set of real numbers. $x^{2} + y^{2} - 11x - 10y + 24 = 0$ Which of the following statements must be true? cuts the y-axis at the points P and Q, then the length of PQ is f '(0) = g '(0) (1) q(x) = h(x)(2) 2 Α (3) h(x) - f(x) = a constantВ 5 (1), (2) and (3)Α С 10 В (1) and (2) only D 11 С (1) and (3) only Е 14 D (2) only Е (3) only 6. Given that $\cos \theta = k$, then $\cos 2\theta$ equals Which of the following is/are factors 2. 2*k* Α of $x^3 - 4x^2 + x + 6$? $k^2 - 1$ В 2*k*² - 1 С x+1(2)x-2(3)x-3 (1) $1 - k^2$ D Α (1) only Е $1 - 2k^2$ В (2) only (3) only С (1), (2) and (3) D 7. Given that x + 2 is a factor of E Some other combination of $x^3 - 2x^2 - 3x + c$, then the value (1), (2) and (3). of c is 22 Α $(x-8)^2 + (y-6)^2 = 25$ 3. Α В 10 $(x-4)^2 + (y-3)^2 = 5$ В С 6 С $(x-4)^2 + (y-3)^2 = 25$ -6 D $x^{2} + (y - 6)^{2} = 36$ D Е -10 $(x-8)^2 + y^2 = 64$ F 8. The centre of a circle lies on the line The remainder on dividing the 4. 2x + y = 0. The lines y = 1 and y = 7polynomial $5x^3 - 4x + 8$ by x - 2 is are tangents to this circle. The equation of the circle is Α -24 В 20 $(x-2)^2 + (y + 4)^2 = 3$ Α В $(x+2)^2 + (y-4)^2 = 3$ С 36 $(x-2)^2 + (y-4)^2 = 9$ D 40 С

D $(x-2)^2 + (y+4)^2 = 9$

F

 $(x+2)^2 + (y-4)^2 = 9$

MATHS HIGHER - WORKSHEETS

- 9. Given that f'(x) = 4x + 3 and f(1) = 0, then f(x) equals
 - A $2x^{2} + 3x$ B $2x^{2} + 3x - 5$ C $x^{2} + 3x - 4$ D $2x^{2} - 2$ E $x^{4} + 3x - 4$
- 10. $\sin 4x^{\circ} \sin 3x^{\circ} \cos 4x^{\circ} \cos 3x^{\circ}$ equals

Α	sin <i>x</i> °
В	cos (- <i>x</i> °)
С	- cos x°
D	cos 7 <i>x</i> °
Е	-cos 7 <i>x</i> °

MATHS HIGHER - WORKSHEETS