1. The functions f, g, h are such that $f^{\prime}(x)=g^{\prime}(x)=h^{\prime}(x), x \in R$, the set of real numbers.
Which of the following statements must be true?
(1) $f^{\prime}(0)=g^{\prime}(0)$
(2) $g(x)=h(x)$
(3) $\quad h(x)-f(x)=$ a constant

A (1), (2) and (3)
B (1) and (2) only
C (1) and (3) only
D (2) only
E (3) only
2. Which of the following is/are factors of $x^{3}-4 x^{2}+x+6$?
(1) $x+1$ (2) $x-2$ (3) $x-3$

A (1) only
B (2) only
C (3) only
D (1), (2) and (3)
E Some other combination of (1), (2) and (3).
3. $A(x-8)^{2}+(y-6)^{2}=25$

B $\quad(x-4)^{2}+(y-3)^{2}=5$
C $\quad(x-4)^{2}+(y-3)^{2}=25$
D $\quad x^{2}+(y-6)^{2}=36$
E $\quad(x-8)^{2}+y^{2}=64$
4. The remainder on dividing the polynomial $5 x^{3}-4 x+8$ by $x-2$ is

A -24
B 20
C 36
D 40
E none of these
5. Given that the circle
$x^{2}+y^{2}-11 x-10 y+24=0$
cuts the y-axis at the points P and Q,
then the length of $P Q$ is

A 2
B 5
C 10
D 11
E 14
6. Given that $\cos \theta=k$, then $\cos 2 \theta$ equals

A $2 k$
B $\quad k^{2}-1$
C $\quad 2 k^{2}-1$
D $\quad 1-k^{2}$
E $\quad 1-2 k^{2}$
7. Given that $x+2$ is a factor of $x^{3}-2 x^{2}-3 x+c$, then the value of c is

A 22
B 10
C 6
D -6
E -10
8. The centre of a circle lies on the line $2 x+y=0$. The lines $y=1$ and $y=7$ are tangents to this circle. The equation of the circle is

A $\quad(x-2)^{2}+(y+4)^{2}=3$
B $\quad(x+2)^{2}+(y-4)^{2}=3$
C $\quad(x-2)^{2}+(y-4)^{2}=9$
D $(x-2)^{2}+(y+4)^{2}=9$
E $\quad(x+2)^{2}+(y-4)^{2}=9$
9. Given that $f^{\prime}(x)=4 x+3$ and $f(1)=0$, then $f(x)$ equals

A $\quad 2 x^{2}+3 x$
B $\quad 2 x^{2}+3 x-5$
C $\quad x^{2}+3 x-4$
D $\quad 2 x^{2}-2$
E $\quad x^{4}+3 x-4$
10. $\sin 4 x^{\circ} \sin 3 x^{\circ}-\cos 4 x^{\circ} \cos 3 x^{\circ}$ equals

A $\quad \sin x^{\circ}$
B $\quad \cos \left(-x^{\circ}\right)$
C $\quad-\cos x^{\circ}$
D $\cos 7 x^{\circ}$
E $\quad-\cos 7 x^{\circ}$

