1.

2.

The diagram shows a curve with equation y = f(x) and a straight line with equation y = kx. The shaded area in the diagram is given by

$$A \int_{1}^{m} f(x) dx - \int_{a}^{b} kx dx$$
$$B \int_{ka}^{kb} f(x) dx - \int_{ka}^{kb} kx dx$$
$$C \int_{a}^{b} \{f(x) - kx\} dx$$
$$D \int_{ka}^{kb} \{f(x) - kx\} dx$$

E none of these

The line y = x is a tangent to the circle with circle ($\sqrt{2}$, 0). The radius of the circle is

- A $\frac{1}{\sqrt{2}}$ B 1
- C √2
- D 2
- E none of these

- 3. If the centre of the circle $x^{2} + y^{2} + 2gx + 2fy + c = 0$ lies on the *y*-axis then
 - A *f* = 0
 - C = 0

g = 0

В

4.

$$\mathsf{D} \qquad f = g$$

$$E g^2 + f^2 = c$$

The graph in the diagram could be that of the function $f: x \rightarrow$

- A $x^{2} 4x + 3$ B $x^{2} - 4x + 4$ C $x^{2} + 4x + 4$ D $x^{2} + 3x - 3$ E $x^{2} - 3x + 4$
- 5. Given that Q is the centre of the circle $x^2 + y^2 + 2x 4y 15 = 0$ and R (3, 4) is a point on the circumference, then the gradient of QR is
 - A 0 B $\frac{1}{3}$ C $\frac{1}{2}$ D 2 E 3

MATHS HIGHER - WORKSHEETS

Unit 2 - 1G

6. The minimum value of $\cos 120^\circ + \cos x^\circ, x \in R$ is 1 Α 2 $B - \frac{1}{2}$ <u>3</u> 2 С D - $\frac{3}{2}$ $\frac{\sqrt{3}}{2}$ - 1 E The circle with equation 7. $x^2 + y^2 + 6x - 8y - 5 = 0$ has as its centre A (6,-8) B (-6,8) C (3, -4) D (-3, 4) E none of these Given that $f^{1}(x) = 5x^{\frac{3}{2}}$ and f(1) = 1, 8. f(x) is equal to **A** $2x^{\frac{5}{2}}$ B $2x^{\frac{5}{2}} - 1$ $C = 5x^{\frac{5}{2}} - 4$ D $\frac{1}{2}(15x^{\frac{1}{2}} - 13)$ E $\frac{1}{2}(25x^{\frac{5}{2}} - 23)$

9.	Given that $0 \le \alpha \le \frac{\pi}{2}$ and sin $\alpha = \frac{\pi}{2}$	<u>3</u> 5
	then sin ($ heta$ + $lpha$) equals	
	A sin θ + $\frac{3}{5}$	
	B $\frac{3}{5}\sin\theta + \frac{4}{5}\cos\theta$	
	$C \frac{4}{5}\sin\theta + \frac{3}{5}\cos\theta$	
	$D \frac{3}{5}\sin\theta - \frac{4}{5}\cos\theta$	
	$E \frac{4}{5} \sin \theta - \frac{3}{5} \cos \theta$	
	e ^b	
10.	$\int_{a} k dx$, when k is a non-zero	
10.	$\int_{a} k dx$, when k is a non-zero constant, equals	
10.	$\int_{a}^{a} k dx, \text{ when } k \text{ is a non-zero}$ constant, equals $A \qquad 0$	
10.	$\int_{a}^{a} k dx, \text{ when } k \text{ is a non-zero}$ constant, equals $A 0$ $B b - a$	
10.	$\int_{a}^{a} k dx, \text{ when } k \text{ is a non-zero}$ constant, equals $A 0$ $B b - a$ $C \frac{1}{2} (b^{2} - a^{2})$	
10.	$\int_{a}^{a} k dx, \text{ when } k \text{ is a non-zero}$ constant, equals $A 0$ $B b - a$ $C \frac{1}{2} (b^{2} - a^{2})$ $D k(b - a)$	
10.	$\int_{a}^{a} k dx, \text{ when } k \text{ is a non-zero}$ constant, equals $A 0$ $B b - a$ $C \frac{1}{2} (b^{2} - d^{2})$ $D k(b - a)$ $E k(a - b)$	
10.	$\int_{a}^{a} k dx, \text{ when } k \text{ is a non-zero}$ constant, equals $A 0$ $B b - a$ $C \frac{1}{2} (b^{2} - a^{2})$ $D k(b - a)$ $E k(a - b)$	

MATHS HIGHER - WORKSHEETS