1.

The diagram shows a curve with equation $y=f(x)$ and a straight line with equation $y=k x$. The shaded area in the diagram is given by
A $\int_{1}^{m} f(x) d x-\int_{a}^{b} k x d x$
B $\int_{\mathrm{ka}}^{\mathrm{kb}} f(x) d x-\int_{\mathrm{ka}}^{\mathrm{kb}} k x d x$
c $\int_{a}^{b}\{f(x)-k x\} d x$
D $\int_{k a}^{k b}\{f(x)-k x\} d x$
E none of these
2.

The line $y=x$ is a tangent to the circle with circle $(\sqrt{ } 2,0)$. The radius of the circle is

A $\frac{1}{\sqrt{2}}$
B 1
$C \quad \sqrt{2}$
D 2

E none of these
3. If the centre of the circle
$x^{2}+y^{2}+2 g x+2 f y+c=0$ lies on the y-axis then

A $\quad f=0$

B $\quad g=0$
$c \quad c=0$

D $\quad f=g$
E $\quad g^{2}+f^{2}=c$
4.

The graph in the diagram could be that of the function $f: x \rightarrow$

A $x^{2}-4 x+3$
B $x^{2}-4 x+4$
C $x^{2}+4 x+4$
D $x^{2}+3 x-3$
E

$$
x^{2}-3 x+4
$$

5. Given that Q is the centre of the circle $x^{2}+y^{2}+2 x-4 y-15=0$ and
$R(3,4)$ is a point on the circumference, then the gradient of $Q R$ is

A 0
B $1 / 3$
C $1 / 2$
D 2
E 3
6. The minimum value of $\cos 120^{\circ}+\cos x^{\circ}, x \varepsilon R$ is

A $\frac{1}{2}$
B $-\frac{1}{2}$
C $\quad \frac{3}{2}$
$D-\frac{3}{2}$
E $\quad \frac{\sqrt{ } 3}{2}-1$
7. The circle with equation
$x^{2}+y^{2}+6 x-8 y-5=0$
has as its centre

A $(6,-8)$

B $\quad(-6,8)$
$C \quad(3,-4)$
D $\quad(-3,4)$
E none of these
8. Given that $f^{1}(x)=5 x^{\frac{3}{2}}$ and $f(1)=1$, $f(x)$ is equal to

A $2 x^{\frac{5}{2}}$
B $2 x^{\frac{5}{2}}-1$
C $5 x^{\frac{5}{2}}-4$
D $\quad \frac{1}{2}\left(15 x^{\frac{1}{2}}-13\right)$
E $\quad \frac{1}{2}\left(25 x^{\frac{5}{2}}-23\right)$
9. Given that $0 \leq \alpha \leq \frac{\pi}{2}$ and $\sin \alpha=\frac{3}{5}$ then $\sin (\theta+\alpha)$ equals

A $\sin \theta+\frac{3}{5}$
B $\frac{3}{5} \sin \theta+\frac{4}{5} \cos \theta$
C $\frac{4}{5} \sin \theta+\frac{3}{5} \cos \theta$
D $\frac{3}{5} \sin \theta-\frac{4}{5} \cos \theta$
E $\frac{4}{5} \sin \theta-\frac{3}{5} \cos \theta$
10. $\int_{a}^{b} k d x$, when k is a non-zero constant, equals

A 0
B $\quad b-a$
C $\quad \frac{1}{2}\left(b^{2}-a^{2}\right)$
D $\quad k(b-a)$
E $\quad k(a-b)$

