1. R is the point $(1,2,4)$ and S the point $(3,0,5)$. Given that P divides RS in the ratio $3: 1$, then the co-ordinates of P are

A $\left(\frac{5}{2}, \frac{1}{2} \cdot \frac{19}{4}\right)$
B $\left(\frac{3}{2}, \frac{3}{2}, \frac{17}{4}\right)$
C $(10,2,19)$
D $(6,6,17)$
E None of these
2. $f(x)=(2 x-1)^{3} ; f^{1}(x)$ equals

A $3(2 x-1)^{2}$
B $6 x(2 x-1)^{2}$
C $6(2 x-1)^{2}$
D $\frac{1}{8}(2 x-1)^{4}$
E None of these
3. The equation of the tangent to the curve, $y=\sin x$, at the point where $x=a$ is

A $y-a=(x-\sin a) \cos a$
B $y-\sin a=(x-a) \cos a$
C $y=\cos a$
D $y=-\cos a$
E $y=x \cos a+a$
4. $\log _{4}\left(\frac{1}{\sqrt{ } 2}\right)$ equals

A $-\frac{1}{2}$
B $-\frac{1}{4}$
C $-\frac{1}{8}$
D $\underline{1}$
4
E $\frac{1}{2}$
5. $\quad P$ and Q have position vectors
$\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}2 \\ -2 \\ -3\end{array}\right)$ respectively
The length of $P Q$ is
$\begin{array}{ll}A & \sqrt{ } 9 \\ B & \sqrt{ } 22 \\ \text { C } & \sqrt{ } 24 \\ \text { D } & \sqrt{ } 26 \\ \text { E } & \sqrt{ } 35\end{array}$
6. Given that $\left(x^{1 / 2}+1\right)^{1 / 3}=2$, then $x^{1 / 2}-1$ equals

A 48
B 7
C 6
D 5
E 3
7. Given that $f(x)=(5 x+2)^{3}$, then $f^{1}(x)$ equals

A $3(5 x+2)^{3}$
B $\quad 15(5 x+2)^{2}$
C $\quad 15 x(5 x+2)^{2}$
D $\quad \frac{1}{20}(5 x+2)^{4}$
E None of these
8. The minimum value of $3 \cos \theta+4 \sin \theta$ is

A -5
B $\sqrt{ } 12$
C $-\frac{4}{3}$
D -1
E $-\frac{3}{4}$
9. The angle between the vectors

$$
\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right) \text { and }\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \text { is }
$$

A $\pi / 6$
B $\pi / 4$
C $\pi / 3$
D $\pi / 2$
E π
10. The centre of the rotation which maps $(9,4)$ onto $(9,0)$ and $(3,4)$ onto $(9,6)$ is the point

A $(6,0)$
B $(6,5)$
C $(7,2)$
D $(8,3)$
E $(9,4)$

