1. If $\log _{x} y=z$ and $\log _{z} y=x$ then x and z are related by the formula

A $x^{x}=z^{z}$
B $x^{z}=z^{x}$
C $x^{x z}=z$
D $x^{x z}=x$
D $x+z=x z$
2. P, Q, R and S are points such that
$\overrightarrow{P Q}$ represents $\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right), \overrightarrow{R S}$ represents $\left(\begin{array}{l}1 \\ m \\ n\end{array}\right)$
and $P Q$ is parallel to $R S$.
Which of the following must be true?
(1) $/=2$
(2) $/: m=2: 3$
(3) $2 /+3 m+5 n=0$

A (1) only
B (2) only
C (3) only
D (1) and (2) only
E None of (1), (2) and (3)
3. Which of the following values of x and y make the vectors.
$\left(\begin{array}{l}x \\ y \\ 7\end{array}\right]$ and $\left(\begin{array}{r}-3 \\ 2 \\ -1\end{array}\right)$ perpendicular ?
(1) $x=2, y=\frac{1}{2}$
(2) (2) $x=-1, y=2$
(3) $x=1, y=5$

A (1) only
B (2) only
C (1) and (3) only
D (2) and (3) only
E (1), (2) and (3)
4.

The diagram shows the curves $y=\sin x$ and $y=\cos x$ for $0<x<\pi / 2$.
The shaded area is given by
A $\int_{0}^{\pi / 4} \sin x d x+\int_{\pi / 4}^{\pi / 2} \cos x d x$
B $\int_{0}^{\pi / 4} \cos x d x+\int_{\pi / 4}^{\pi / 2} \sin x d x$
C $\int_{0}^{\pi / 2}(\cos x-\sin x) d x$
D $\int_{0}^{\pi / 2}(\sin x-\cos x) d x$
$\mathrm{E} \quad \int_{0}^{\pi / 2}(\sin x+\cos x) d x$
5. $f(x)=\cos (2 x-1) ; f^{1}(x)$ is

$$
\begin{array}{ll}
A & \sin (2 x-1) \\
\text { B } & 2 \sin (2 x-1) \\
C & -\sin (2 x-1) \\
D & -2 \sin (2 x-1) \\
E & -2 \sin (2 x-1) \cos (2 x-1)
\end{array}
$$

6. Given that $y=100 x^{7}$, then $\log _{10} y$ equals

A $7 \log _{10} x$
B $7 \log _{10} x+2$
C $7 \log _{10} x+100$
D $100 \log _{10} x+\log _{10} 7$
E $\quad 100 \log _{10} x+7$
7. P is the point $(1,2,3)$ referred to mutually perpendicular axes OX, OY and $O Z$. The tangent of the angle which OP makes with the plane OXY is

A $\frac{1}{\sqrt{ } 14}$
B $\frac{1}{\sqrt{13}}$
C $\frac{2}{\sqrt{10}}$
D $\frac{3}{\sqrt{14}}$
E $\frac{3}{\sqrt{5}}$
8. Given that
$2 \cos \theta-\sin \theta=r \cos (\theta-x)$,
where $r>0$, then the values of r and $\cos x$ are respectively

A $5, \frac{1}{5}$
B

c

D $\sqrt{5}$, $\frac{1}{\sqrt{5}}$

E $\quad \sqrt{5}, \quad \frac{2}{\sqrt{5}}$
9. If $x=\frac{4+\sqrt{3}}{\sqrt{2}} \quad$ and $\quad y=\frac{4-\sqrt{3}}{\sqrt{2}}$ which of the following is/are true?
(1) $x+y=4 \sqrt{ } 2$
(2) $x-y=\sqrt{ } 6$
(3) $x y=\frac{1}{2}$

A (1) and (2) only
B (1) and (3) only
C (2) and (3) only
D (1), (2) and (3)
E (1) only or (2) only or (3) only
10.

The area of the triangle bounded by the coordinate axes and the line $2 x+k y=6$, where $k>0$, is k square units. The value of k is

A 2
B 3
C 6
D 9
E 18

