MATHS HIGHER - WORKSHEETS

1. Which of the following is most likely to show the graph of the function $f: x \rightarrow \log(x^2), x \neq 0$?

- If O, <u>P</u> and Q are distinct points such that OQ = -30P, which of the following is/are true?
 - (1) $| \overrightarrow{OQ} | \cdot | \overrightarrow{OP} |$
 - (2) O, P, Q, are collinear
 - (3) O lies between P and Q $\,$
 - A (1), (2) and (3)
 - B (1) only
 - C (2) only
 - D (3) only
 - E some other combination of (1), (2) and (3)

F is the point (-1, 0) and H is the point (1, 0).

P is any point on the line segment FH such that $\overrightarrow{OP} = k \overrightarrow{FH}$.

The set of possible values of k is

 $A = \{k: 0 \le k \le \frac{1}{2}\} \\ B = \{k: 0 \le k \le \frac{1}{2}\} \\ C = \{k: \frac{1}{2} \le k \le \frac{1}{2}\} \\ D = \{k: -\frac{1}{2} \le k \le 1\} \\ E = \{k: -1 \le k \le 1\}$

- 4. P is the point (1, 2, 3), \overrightarrow{PR} represents the vector $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ and \overrightarrow{RQ} represents the vector $\begin{bmatrix} 3\\1\\2 \end{bmatrix}$ Q is the point A (2, 3, 4) B (4, 3, 5) C (5, 4, 6) D (-1, 2, 2) E (-3, 0, 0)
- 5. For which of the following values of a

is
$$\int_{a} \cos x \, dx = 0$$
?
(1) $\frac{\pi}{4}$ (2) $\frac{\pi}{2}$ (3) π
A (1) only
B (2) only
C (3) only
D (1) and (2) only
E (2) and (3) only

6. Given that \boldsymbol{u} and \boldsymbol{v} are vectors such that $\boldsymbol{u} = \begin{bmatrix} -2\\ 6\\ 4 \end{bmatrix}$ and $\boldsymbol{v} = \begin{bmatrix} 6\\ -4\\ 2 \end{bmatrix}$, then the

angle between them is

A 0

 $B \quad \frac{\pi}{6}$ $C \quad \frac{\pi}{4}$ $D \quad \frac{\pi}{2}$ $c \quad \frac{2\pi}{2}$

- $E \frac{2\pi}{3}$
- Given that log₁₀ y ¹/₂ log ₁₀ y = ¹/₂ log₁₀5, x, y > 0, then y is equal to
 - **A** $10^{\underline{x}}$
 - B $\frac{1}{2}x 5$
 - $C = \sqrt{x-5}$
 - $D \quad \frac{\sqrt{x}}{5}$ $E \quad \frac{\sqrt{x}}{5}$
- 8. The tangent to the circle $x^2 + y^2 = 25$ at the point (3, -4) has equation
 - A 3x + 4y = 5B 3x - 4y = 5C 3x + 4y = 25D 3x - 4y = 25E 3x - 4y = 0

- 9. Given that $f(x) = \sin^3 x$, then f'(x) equals
 - $\begin{array}{l} A & \cos^3 x \\ B & 3 \sin^2 x \\ C & 3 \cos^2 x \\ D & 3 \sin^2 x \cos x \end{array}$
 - E $3 \sin x \cos^2 x$
- 10. For which of the following definitions of * on the set of positive real numbers is p*q not equal to q*p?

 p^*q equals

- A *p+q*
- B $p^2 + q^2$

$$C \quad \frac{pq}{p+q}$$

- D *pq*(*p*+*q*)
- E $pq + q^2$