1. Which of the following is most likely to show the graph of the function $f: x \rightarrow \log \left(x^{2}\right), x \neq 0$?

2. If O, P and Q are distinct points such that $\overrightarrow{O Q}=-30 P$, which of the following is/are true?
(1) $|\overrightarrow{O Q}|>|\overrightarrow{O P}|$
(2) O, P, Q, are collinear
(3) O lies between P and Q

A (1), (2) and (3)
B (1) only
C (2) only
D (3) only
E some other combination of (1), (2) and (3)
3.

F is the point $(-1,0)$ and H is the point (1, 0).
P is any point on the line segment FH such that $\overrightarrow{O P}=k \overrightarrow{F H}$.

The set of possible values of k is
A $\quad\left\{k .0 \leq k \leq \frac{1}{2}\right\}$
B $\quad\left\{k .0 \leq k \leq \frac{1}{2}\right\}$
C $\quad\left\{k . \quad \frac{1}{2} \leq k \leq \frac{1}{2}\right\}$
D $\quad\left\{k .-\frac{1}{2} \leq k \leq 1\right\}$
E $\quad\{k .-1 \leq k \leq 1\}$
4. $\quad P$ is the point $(1,2,3), \overrightarrow{P R}$ represents the vector $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\overrightarrow{R Q}$ represents the vector $\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$
Q is the point
A $(2,3,4)$
B $(4,3,5)$
C $(5,4,6)$
D $(-1,2,2)$
E $\quad(-3,0,0)$
5. For which of the following values of a is $\int_{a}^{2 a} \cos x d x=0$?
(1) $\frac{\pi}{4}$
(2) $\frac{\pi}{2}$
(3) π

A (1) only
B (2) only
C (3) only
D (1) and (2) only
E (2) and (3) only
6. Given that \boldsymbol{u} and \boldsymbol{v} are vectors such that $u=\left(\begin{array}{r}-2 \\ 6 \\ 4\end{array}\right)$ and $v=\left(\begin{array}{r}6 \\ -4 \\ 2\end{array}\right)$, then the angle between them is

A 0
B $\frac{\pi}{6}$
C $\frac{\pi}{4}$
D $\frac{\pi}{2}$
E $\frac{2 \pi}{3}$
7. Given that $\log _{10} y \frac{1}{2} \log _{10} y=\frac{1}{2} \log _{10} 5$, $x, y>0$, then y is equal to

A $\underline{\underline{x}}$
B $\frac{1}{2} x-5$
c $\sqrt{ } x-5$
D $\frac{\mathfrak{V} x}{5}$
E $\frac{\backslash x}{5}$
8. The tangent to the circle $x^{2}+y^{2}=25$ at the point $(3,-4)$ has equation

A $3 x+4 y=5$
B $3 x-4 y=5$
C $3 x+4 y=25$
D $3 x-4 y=25$
E $3 x-4 y=0$
9. Given that $f(x)=\sin ^{3} x$, then $f^{\prime}(x)$ equals

A $\cos ^{3} x$
B $3 \sin ^{2} x$
C $3 \cos ^{2} x$
D $3 \sin ^{2} x \cos x$
E $3 \sin x \cos ^{2} x$
10. For which of the following definitions of * on the set of positive real numbers is $p^{\star} q$ not equal to $q^{\star} p$?
$p^{*} q$ equals
A $p+q$
B $\quad p^{2}+q^{2}$
C $\frac{p q}{p+q}$
D $p q(p+q)$
E $p q+q^{2}$

