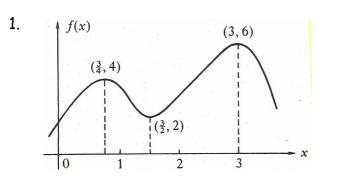
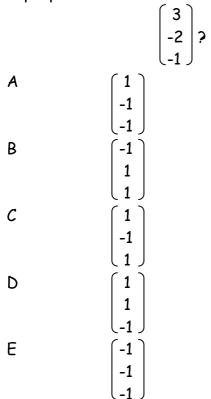
MATHS HIGHER - WORKSHEETS



Which of the following is/are true for the function *f* whose graph is given above ?

- (1) $f^{2}(0) < 0$
- (2) $f^{2}(1) < 0$
- (3) $f^{1}(2) < 0$
- (4) $f^{2}(3) < 0$
- A (1) and (2) only
- B (30 and (4) only
- C (1) and (3)
- D (2) only
- E (4) only
- 2. Which one of the following vectors is perpendicular to



3. The angle between the vectors $\begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$

is

and

Α

В

С

D

D

Е

4.

1

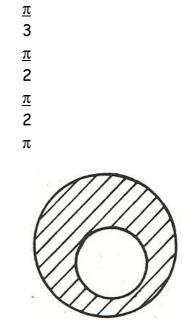
3 √6

π

6

<u>π</u>

4



The figure shows two circles whose radii are in the ratio 2 : 3. The ratio of the shaded area to the area of the larger circle is

- A 1:3
- B 4:9
- C 5:9
- D 2:3
- E dependent on the positions of the centres of the circles

- 5. The maximum value of $\sin x + \cos x$, $x \in R$, is
 - $A \frac{1}{2}$
 - B 1
 - *C* √2
 - D 2
 - E none of these
- Given that p, q and r are positive real numbers, then log_rp ÷ log_rq equals
 - A $\log_r p \log_r q$
 - B $\log_r(p-q)$
 - $C \quad \log_r \left(\frac{P}{q} \right)$
 - $D \log_q p$
 - E log_p q
- 7. Given that k is a constant of integration, then

$$\int (4x+1)^{-\frac{1}{2}} dx \text{ equals}$$

A
$$(4x+1)^{\frac{1}{2}} + k$$

B $\frac{1}{2}(4x+1)^{\frac{1}{2}} + k$
C $\frac{1}{4}(4x+1)^{\frac{1}{2}} + k$
D $\frac{1}{4}(4x+1)^{-\frac{1}{2}} + k$
E $\frac{1}{2}(4x+1)^{-\frac{1}{2}} + k$

8. Given that $f(x) = \cos\left(\frac{\pi}{6} - x\right)$, then $f^{2}\left(\frac{\pi}{6}\right)$ equals A $-\frac{\sqrt{3}}{2}$ B $-\frac{1}{2}$ C 0D $\frac{1}{2}$ E $\frac{\sqrt{3}}{2}$

- 9. Given that $\log_a 64 = \frac{3}{2}$, the value of 2
 - a is
 - A 8 B 16 C $42^{\frac{2}{3}}$ D 96 E 512
- 10. If $4 \sin \theta 3 \cos \theta$ is expressed in the form $r \cos (\theta - \alpha)$ where r > 0and $0 \le \alpha < 2\pi$ then α lies between
 - A 0 and $\frac{\pi}{2}$ B $\frac{\pi}{2}$ and π 2 C π and $\frac{3\pi}{2}$ D $\frac{3\pi}{2}$ and 2π