1.

Which of the following is/are true for the function f whose graph is given above?
(1) $f^{\prime}(0)<0$
(2) $f^{(1)}<0$
(3) $f^{\prime}(2)<0$
(4) $f^{\prime}(3)<0$

A (1) and (2) only
B (30 and (4) only
C (1) and (3)
D (2) only
E (4) only
2. Which one of the following vectors is perpendicular to

$$
\left(\begin{array}{c}
3 \\
-2 \\
-1
\end{array}\right) ?
$$

A

B

C

D

E
3. The angle between the vectors $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
and $\left(\begin{array}{r}1 \\ 3 \\ \sqrt{6}\end{array}\right)$
A $\quad \underline{\pi}$
6
B $\quad \underline{\pi}$
4
C $\quad \pi$
3
D $\quad \pi$
2
D $\quad \pi$
2
E π
4.

The figure shows two circles whose radii are in the ratio $2: 3$. The ratio of the shaded area to the area of the larger circle is

A $1: 3$
B $4: 9$
C $5: 9$
D 2:3
E dependent on the positions of the centres of the circles
5. The maximum value of $\sin x+\cos x$, $x \in R$, is

A $\frac{1}{2}$
B 1
C $\sqrt{ } 2$
D 2
E none of these
6. Given that p, q and r are positive real numbers, then $\log _{r} p \div \log _{r} q$ equals

A $\log _{r} p-\log _{r} q$
B $\log _{r}(p-q)$
C $\log _{r}\left(\frac{p}{q}\right)$
D $\log _{q} p$
E $\log _{p} q$
7. Given that k is a constant of integration, then
$\int(4 x+1)^{-\frac{1}{2}} d x$ equals
A $(4 x+1)^{\frac{1}{2}}+k$
B $\quad \frac{1}{2}(4 x+1)^{\frac{1}{2}}+k$
C $\frac{1}{4}(4 x+1)^{\frac{1}{2}}+k$
D $\frac{1}{4}(4 x+1)^{-\frac{1}{2}}+k$
E $\quad \frac{1}{2}(4 x+1)^{-\frac{1}{2}}+k$
8. Given that $f(x)=\cos \left(\frac{\pi}{6}-x\right)$, then $f^{1}\left(\frac{\pi}{6}\right)$ equals

A $-\frac{\sqrt{ } 3}{2}$
B $-\frac{1}{2}$
C 0
D $\quad \frac{1}{2}$
E $\frac{\sqrt{ } 3}{2}$
9. Given that $\log _{a} 64=\frac{3}{2}$, the value of a is

A 8
B 16
C $\quad 42^{\frac{2}{3}}$
D 96
E 512
10. If $4 \sin \theta-3 \cos \theta$ is expressed in the form $r \cos (\theta-\alpha)$ where $r>0$ and $0 \leq \alpha<2 \pi$ then α lies between

A 0 and π 2
B $\quad \pi$ and π
2
C $\quad \pi$ and $\frac{3 \pi}{2}$
D $\frac{3 \pi}{2}$ and 2π

