1.

The graph illustrates the law $p=a v^{n}$.
The value of n is nearest to
A $\quad-0.60$
B 0.25
C 0.60
D 1.3
E 4.0
2. The tangent at the point P to the curve $y=\sin 2 x$ has gradient 1. A possible value for the x coordinate of P is

A 0
B $\quad \pi$
12
C $\quad \pi$
6
D $\quad \underline{\pi}$
3
E $\quad \underline{\pi}$
2
3. $\int_{0}^{\pi}(1+\cos x) d x$ equals

A 0
B 1
C 2
D π
E 4
4. $I=\int_{0}^{k \pi} \sin x d x$ where k is a positive integer. Which of the following statements about I is/are true.
(1) I has a greatest value of 2 .
(2) Ihas a least value of -2 .
(3) If $I=0$ then k is even

A (1) and (2) only
B (2) and (3) only
C (1) and (3) only
D (1), (2) and (3)
E (1) only or (2) only or (3) only
5. For what value of x are the vectors

$$
\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right] \text { and }\left[\begin{array}{c}
-5 \\
2 \\
x
\end{array}\right] \text { perpendicular? }
$$

A -4
B $-\frac{1}{4}$
C $\frac{1}{4}$
D 4
E No value
6. If $\overrightarrow{P Q}$ represents $\left(\begin{array}{c}2 \\ -4 \\ 0\end{array}\right)$ and P is
$(0,2,-2)$, then R, the mid point of $P Q$, is

A $(1,-3,-1)$
B $\quad(1,-2,0)$
C $\quad(1,-1,-1)$
D (1,0,-2)
E none of these
7. If $\sqrt{3 \cos } \theta+\sin \theta=2 \cos (\theta-x)$, $0 \leq \alpha \leq 2 \pi$, then α equals

A $\pi / 6$
B $\pi / 3$
C $5 \pi / 6$
D $5 \pi / 3$
E $11 \pi / 6$
8. Given that $4 x^{-\frac{1}{2}}=1, x \in R$, then x equals

A $\frac{1}{16}$
B 1 8
C $\frac{1}{2}$
D 8
E 16
9. Given that $f(x)=(4 x+1)^{3}$, then $f^{\prime}(x)$ is

A $12(4 x+1)^{2}$
B $3(4 x+1)^{2}$
C $\quad \frac{3}{4}(4 x+1)^{2}$
D $192 x^{2}$
E $\quad 12 x^{2}$

