Exponential Functions.

1. The amount *A* grams of a radioactive substance after a time *t* minutes is given by $A = A_0 e^{-kt}$ where A_0 is the initial amount of the substance and *k* is a constant.

In 3 minutes, 10 grams of the substance Bismuth are reduced to 9 grams through decay.

Find the value of k.

(3)

(3)

- 2. The amount of A_t micrograms of a certain radioactive substance remaining after t years decreases according to the law $A_t = A_0 e^{-0.002t}$, where A_0 is the amount present initially.
- (a) If the 600 micrograms are left after 1000 years, how many micrograms were present initially?
- (b) The half-life of a substance is the time taken for the amount to decrease to half its initial amount. What is the half-life of this substance? (4)
- 3. A mug of tea cools according to the law $T_t = T_0 e^{-kt}$, where T_0 is the initial temperature and T_t is the temperature after *t* minutes. all temperatures are in °C.
- (a) A particular mug of tea cooled from boiling point (100°) to 75° C in a quarter of an hour. Calculate the value of k.
- (b) By how many degrees will the temperature of this tea fall in the next quarter of an hour?

(5)

- 4. The value $V(\text{in } \pounds \text{ million})$ of a cruise ship t years after launch is given by the formula $V = 252e^{-0.06335t}$.
- (a) What was the value when the ship was launched?
 (b) The owners decide to sell the ship once its value falls below £20 million. After how many years will it be sold?
 (4)

TOTAL (20)