Exponential Functions.

1. The amount A grams of a radioactive substance after a time t minutes is given by $A=A_{0} e^{-k t}$ where A_{0} is the initial amount of the substance and k is a constant.

In 3 minutes, 10 grams of the substance Bismuth are reduced to 9 grams through decay.
Find the value of k.
2. The amount of A_{t} micrograms of a certain radioactive substance remaining after t years decreases according to the law $A_{t}=A_{0} e^{-0.002 t}$, where A_{0} is the amount present initially.
(a) If the 600 micrograms are left after 1000 years, how many micrograms were present initially?
(b) The half-life of a substance is the time taken for the amount to decrease to half its initial amount. What is the half-life of this substance?
3. A mug of tea cools according to the law $T_{t}=T_{0} e^{-k t}$, where T_{0} is the initial temperature and T_{t} is the temperature after t minutes. all temperatures are in ${ }^{\circ} \mathrm{C}$.
(a) A particular mug of tea cooled from boiling point $\left(100^{\circ}\right)$ to $75^{\circ} \mathrm{C}$ in a quarter of an hour. Calculate the value of k.
(b) By how many degrees will the temperature of this tea fall in the next quarter of an hour?
4. The value V (in $£$ million) of a cruise ship t years after launch is given by the formula $V=252 e^{-0.06335 t}$.
(a) What was the value when the ship was launched?
(b) The owners decide to sell the ship once its value falls below $£ 20$ million. After how many years will it be sold?

