Higher Maths - Homework 10

Non-calculator section:

1. $\tan x=1 / 2$. The value of $\sin 2 x$ is
A $\frac{2}{5}$
B $\frac{2}{\sqrt{5}}$
C $\frac{4}{5}$
D $\frac{4}{\sqrt{5}}$
2. $f(x)=\frac{x+1}{x}-1$ and $g(x)=\frac{2}{x} \quad x \neq 0 . f(g(x))$ could be written as
A x
B 2 x
C $\frac{1}{2} \mathrm{x}$
D None of these
3. When $2-4 x-x^{2}$ is written in the form $a-(x+b)^{2}$, the value of a is
A -2
B 6
C 2
D 4
4. (a) Given $(x+2)$ is a factor of $f(x)=x^{3}-p x-6$, find p.
(b) Hence factorise $f(x)$ fully.
5. (a) A is the point $(3,1,-4)$ and C is $(15,13,-16)$. B divides AC in the ratio 2:1, find the coordinates of B .
(b) D is the point $(12,11,-10)$ and E is $(8,3,-18)$. Show that D, B and E are collinear.
6. A circle has equation $x^{2}+y^{2}-6 x+8 y-36=0$. Find the equation of the tangent to this circle at the point $(-3,1)$.

7. A curve has equation $y=x^{2}-12 \sqrt{x}$.

Find the equation of the tangent to this curve at the point where $x=4$.
8. PQR is a triangle with $\mathrm{P}(2,-1), \mathrm{Q}(2,9)$ and $\mathrm{R}(5,0)$.
(a) Find the equation of the perpendicular bisector of PQ .
(b) Find the equation of the altitude from P to QR .
(c) Find the point of intersection of these two lines.

Calculator section:

9. $f^{\prime}(x)=6(2 x-1)^{2}$ and $f(2)=17$.

Find a formula for $f(x)$.
10. VABCD is a pyramid with rectangular base $A B C D$.

The vectors $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AD}}$ and $\overrightarrow{\mathrm{AV}}$ are given by

$$
\overrightarrow{\mathrm{AB}}=8 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k} \quad \overrightarrow{\mathrm{AD}}=-2 \mathbf{i}+10 \mathbf{j}-2 \mathbf{k} \quad \overrightarrow{\mathrm{AV}}=\mathbf{i}+7 \mathbf{j}+7 \mathbf{k}
$$

(a) Express $\overrightarrow{\mathrm{VC}}$ in component form.
(b) Calculate the size of angle AVC.

(b) The diagram opposite shows the graph of $g(x)=a \sin b x+c$.
Write down a formula for $g(x)$.

(c) Express $f(x)+g(x)$ in the form $k \cos (2 x-\alpha)$.
(d) Hence solve $f(x)+g(x)=\sqrt{10}, 0 \leq x \leq 360$
12. The diagram opposite shows a parallelogram.

Given $|\mathbf{a}|=5$ and $|\mathbf{b}|=4$, show that $\mathbf{a} \cdot(\mathbf{a}+\mathbf{b})=35$.

13. (a) The diagram shows the graph of $y=f(x)$. Find a formula for $f(x)$.
(b) The shaded region has an area of 32 units. Find p .

14. (a) State the condition for a quadratic equation to have equal roots.
(b) The equation $(\mathrm{x}+\mathrm{k})^{2}=\mathrm{k}(\mathrm{x}-1)+1$ has equal roots, find k .

