Higher Maths - Homework 2

1. The diagram opposite show the graph of $y=f(x)$.

Which of the following shows the graph of $y=f(-x)$.

C

D

2. A function f is defined as $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{\mathrm{x}^{2}-3 \mathrm{x}-4}$

An acceptable domain for this function would be
A $\{x: x \neq 4, x \in R\}$
B $\{x: x \neq-1,3, \quad x \in R\}$
$C\{x: x \neq-3,1, x \in R\}$
D $\{x: x \neq-1,4, x \in R\}$
3. The points $\mathrm{A}(5,-2), \mathrm{B}(2,2)$ and $\mathrm{C}(14, \mathrm{k})$ are collinear. The value of k is
A -14
B 14
C 18
D -18
4. Find the equation of the line passing through the point $(-2,3)$ which is perpendicular to the line with equation $4 x+2 y-5=0$.
5. Find the size of angle a° in the diagram opposite.

6. The diagram shows the graph of $y=f(x)$, where $-2 \leq x \leq 3$.

Sketch the graph of $y=3-f(x)$

7. Find all the values of x in the interval $0 \leq x \leq 2 \pi$ for which $\tan ^{2} x=3$.
8. $f(x)=3-x$ and $g(x)=\frac{3}{x}, x \neq 0$.
(a) Find $p(x)$ where $p(x)=f(g(x))$.
(b) If $\mathrm{q}(\mathrm{x})=\frac{3}{3-\mathrm{x}}, \mathrm{x} \neq 3$, find $\mathrm{p}(\mathrm{q}(\mathrm{x}))$ in its simplest form.
(c) State the connection between $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$.
9. A triangle has vertices $\mathrm{A}(1,1), \mathrm{B}(3,5)$ and $\mathrm{C}(11,1)$.
a. Show that triangle ABC is right angled at B .
b. The medians AD and BE intersect at M . Find the equations of AD and BE.
c. Find the coordinates of M.
10. $f(x)=3 \cos x-1$ and $g(x)=x^{2}-4$.
a. Find a formula for $g(f(x))$.
b. Hence, or otherwise, solve the equation $g(f(x))=0$ for $0 \leq x \leq 360$.

