Higher Maths – Homework 2

2. A function f is defined as $f(x) = \frac{x}{x^2 - 3x - 4}$

An acceptable domain for this function would be

A {x: $x \neq 4$, $x \in R$ } B {x: $x \neq -1,3$, $x \in R$ } C {x: $x \neq -3,1$, $x \in R$ } D {x: $x \neq -1,4$, $x \in R$ }

3. The points A(5,-2), B(2,2) and C(14,k) are collinear. The value of k is

A -14 B 14 C 18 D -18

4. Find the equation of the line passing through the point (-2,3) which is perpendicular to the line with equation 4x + 2y - 5 = 0.

7. Find all the values of x in the interval $0 \le x \le 2\pi$ for which $\tan^2 x = 3$.

8.
$$f(x) = 3 - x$$
 and $g(x) = \frac{3}{x}$, $x \neq 0$.

- (a) Find p(x) where p(x) = f(g(x)).
 (b) If q(x) = 3/(3-x), x ≠ 3, find p(q(x)) in its simplest form.
- (c) State the connection between p(x) and q(x).
- 9. A triangle has vertices A(1,1), B(3,5) and C(11,1).
 - a. Show that triangle ABC is right angled at B.
 - b. The medians AD and BE intersect at M. Find the equations of AD and BE.
 - c. Find the coordinates of M.

10. $f(x) = 3\cos x - 1$ and $g(x) = x^2 - 4$.

- a. Find a formula for g(f(x)).
- b. Hence, or otherwise, solve the equation g(f(x)) = 0 for $0 \le x \le 360$.