<u>Higher Maths – Homework 5</u>

- 1. If $x^2 6x + 5$ expressed in the form $(x + a)^2 + b$ then the values of a and b are
- A a = -3, b = -4 B a = 3, b = -4 C a = -3, b = 4 D a = 3, b = 4
- 2. A is the point (2,-4) and B is the point (-6,-4). The equation of the perpendicular bisector of AB is
- A x = 2 B x = -2 C y = -4 D y = -2
- 3. What is the derivative of $\frac{2x^3 1}{x}$ with respect to x
- A $6x x^{-2}$ B $4x + x^{-2}$ C $4x x^{-2}$ D 6x
- 4. (a) Show that (x 1) is a factor of $f(x) = 2x^3 + 5x^2 11x + 4$. (b) Hence factorise f(x) completely.

- 7. A triangle has vertices A(1,1), B(7,-2) and C(8,10).
 (a) Find the equation of the altitude CD.
 (b) Find the coordinates of D.
- 8. A recurrence relation is defined as u_{n+1} = au_n + b.
 (a) Given u₁ = 24, u₂ = 30 and u₃ = 34.5, find a and b.
 - (b) Hence find the limit of this relation.
- 9. Find the coordinates of the point where the tangent to the curve $y = x^4 20x + 21$ has gradient 12.

10.
$$f(x) = \frac{3}{4 - x}$$
 and $g(x) = \frac{4x + 1}{x}$

Show that f(g(x)) = -3x

11. The diagram below shows the graph of the function y = a + bsin cx for $0 \le x \le \pi$.

- (a) Write down the values of a, b and c.
- (b) Find algebraically the values of x for which y = 2.5.
- 12. A large tank, in the shape of a cuboid, has volume $62.5m^3$. The tank has a square base of side x and is open at the top.
 - (a) Express the height h, of the tank in terms of x and show that the surface area is given by

$$A = x^2 + \frac{250}{x}$$

(b) Find x so that the surface area is minimised and hence write down the dimensions of the tank.