Higher Maths - Homework 5

1. If $x^{2}-6 x+5$ expressed in the form $(x+a)^{2}+b$ then the values of a and b are
A $a=-3, b=-4$
B $a=3, b=-4$
C $a=-3, b=4$
D $\mathrm{a}=3, \mathrm{~b}=4$
2. A is the point $(2,-4)$ and B is the point $(-6,-4)$. The equation of the perpendicular bisector of AB is
A $x=2$
B $x=-2$
$C y=-4$
D $y=-2$
3. What is the derivative of $\frac{2 x^{3}-1}{x}$ with respect to x
A $6 x-x^{-2}$
B $4 x+x^{-2}$
C $4 x-x^{-2}$
D 6x
4. (a) Show that $(x-1)$ is a factor of $f(x)=2 x^{3}+5 x^{2}-11 x+4$.
(b) Hence factorise $f(x)$ completely.
5. Part of the line $3 y-4 x+6=0$ is shown.

Calculate the size of angle a^{o}, to one decimal place.

6. Part of the graph of $f(x)$ is shown opposite. The graph has stationary points at $(0,4)$, $(3,-3)$ and $(5,2)$.

Sketch the graph of $\mathrm{f}^{\prime}(\mathrm{x})$.

7. A triangle has vertices $\mathrm{A}(1,1), \mathrm{B}(7,-2)$ and $\mathrm{C}(8,10)$.
(a) Find the equation of the altitude CD.
(b) Find the coordinates of D.
8. A recurrence relation is defined as $u_{n+1}=a u_{n}+b$.
(a) Given $u_{1}=24, u_{2}=30$ and $u_{3}=34.5$, find a and b.
(b) Hence find the limit of this relation.
9. Find the coordinates of the point where the tangent to the curve $y=x^{4}-20 x+21$ has gradient 12 .
10. $\mathrm{f}(\mathrm{x})=\frac{3}{4-\mathrm{x}}$ and $\mathrm{g}(\mathrm{x})=\frac{4 \mathrm{x}+1}{\mathrm{x}}$.

Show that $\mathrm{f}(\mathrm{g}(\mathrm{x}))=-3 \mathrm{x}$
11. The diagram below shows the graph of the function $\mathrm{y}=\mathrm{a}+\mathrm{b} \sin \mathrm{cx}$ for $0 \leq \mathrm{x} \leq \pi$.

(a) Write down the values of a, b and c .
(b) Find algebraically the values of x for which $\mathrm{y}=2.5$.
12. A large tank, in the shape of a cuboid, has volume $62.5 \mathrm{~m}^{3}$. The tank has a square base of side x and is open at the top.
(a) Express the height h , of the tank in terms of x and show that the surface area is given by

$$
\mathrm{A}=\mathrm{x}^{2}+\frac{250}{\mathrm{x}}
$$

(b) Find x so that the surface area is minimised and hence write down the dimensions of the tank.

