Higher Maths - Homework 7

1. Given that x is an acute angle and $\tan \mathrm{x}=\frac{1}{2}$, $\cos 2 \mathrm{x}$ will be equal to

A $\frac{3}{5}$
B $-\frac{3}{5}$
C $\frac{3}{\sqrt{5}}$
D $-\frac{3}{\sqrt{5}}$
2. What is the integral of $(6 x-1)^{2}$ with respect to x ?
A $12 x^{3}-6 x^{2}+x+c$
B $3 x^{2}-x+c$
C $72 \mathrm{x}-12+\mathrm{c}$
D $36 x^{2}-12 x+1+c$
3. $x^{3}-3 x^{2}+4$ has two factors. One is $(x-2)$, the other is
A $(x-1)$
B $(x+1)$
C ($\mathrm{x}+2$)
D $(x-4)$
4. A recurrence relation is defined as $u_{n+1}=0.8 u_{n}+10, u_{o}=12$.
(a) Find the smallest value of n for which $u_{n}>35$.
(b) Explain why this relation has a limit and calculate this limit.
5. Solve the equation $\sin 2 x+\sin x=0$ for $0 \leq x \leq 360$.
6. (a) Express $f(x)=2 x^{2}+8 x-5$ in the form $f(x)=a(x+b)^{2}+c$.
(b) Hence, or otherwise, sketch $y=2-f(x)$, showing clearly the turning point and the point of crossing the y-axis.
7. Given $x^{2}+(k-4) x+k^{2}+k-5=0$ has equal roots, find two values for k.
8. In the diagram opposite $A B$ is a tangent to the curve $\mathrm{y}=\mathrm{x}^{3}-9 \mathrm{x}$ at the point where $\mathrm{x}=-2$.
(a) Find the equation of this tangent.
(b) Find the coordinates of B where the tangent meets the curve again

9. A is the point $(-3,5), \mathrm{B}$ is $(1,-3)$ and C is $(8,5)$.
(a) Find the equation of the perpendicular bisector of AB .
(b) Find the coordinates of the point where this perpendicular bisector meets the line AC
10. In the diagram $f(x)$ has roots at 1 and 4 , and crosses the y -axis at $(0,-32)$.
(a) Find a formula for $\mathrm{f}(\mathrm{x})$.
(b) Hence calculate the shaded area.

11. $f(x)=x^{3}+3 x^{2}+a x+5$ has only one stationary point.

Find the value of a and determine the nature of this stationary point.
12. The cuboid shown is being used by a games company for promotion.
Its volume is $1000 \mathrm{~cm}^{3}$.
The faces of the cuboid are to be painted in different colours. The cost of painting is as follows.

Faces	
Front and back faces	10 p per cm
Left and right faces	40 p per cm
Top and bottom faces	20 p per cm

(a) Show that the total cost in pounds, C, of painting is given by

$$
\mathrm{C}=40+2 \mathrm{x}+\frac{800}{\mathrm{x}} .
$$

(b) Find the minimum cost of painting the faces.

