Higher Maths – Homework 8

Non-calculator section:

- 1. The angle between the line $\sqrt{3}y + x = 0$ and the positive direction of the x-axis is
 - A 30° B 60° C 120° D 150°
- 2. Given $\tan x = \frac{1}{3}$ and x is an acute angle, then $\sin 2x$ will be equal to
 - A $\frac{3}{5}$ B $\frac{4}{5}$ C $\frac{6}{\sqrt{10}}$ D $\frac{3}{10}$
- 3. $3x^2 + 18x + 11$ expressed in the form $a(x + b)^2 + c$ is A $3(x + 3)^2 + 2$ B $3(x + 3)^2 - 16$ C $3(x + 6)^2 + 2$ D $3(x + 6)^2 - 16$

P(0,1)

- 4. (a) Show that -2 is a root of $x^3 5x^2 8x + 12 = 0$. (b) Hence solve fully the equation $x^3 - 5x^2 - 8x + 12 = 0$.
- 5. Find the equation of the tangent to the circle $x^2 + y^2 4x + 6y 7 = 0$ at the point P(0,1).

6. Given
$$f(x) = 2x^3 - \frac{4x^2}{\sqrt{x}}$$
, find the value of $f'(4)$.

7. Show that the function $f(x) = \frac{2}{3}x^3 + 4x^2 + 8x - 1$ is never decreasing.

Calculator section:

- 8. The roots of $x^2 (k+3)x + 3k + 1 = 0$ are equal. Find k.
- 9. The diagram shows a rhombus PQRS with diagonals PR and QS. PR has equation y 2x + 2 = 0.
 - (a) Find the equation of the diagonal QS.
 - (b) Find the point of intersection of the diagonals PR and QS.

- 10. Solve the equation $3\cos 2x \cos x = 2$ for $0 \le x \le 360$.
- 11. $\frac{dy}{dx} = 9x^2 4x + 5$ and y = 20 when x = 2. Find a formula for y.
- 12. (a) Show that the equation of the tangent to the curve $y = x^3 10x + 15$ at the point where x = 2 is y = 2x 1.
 - (b) Show that this tangent is also a tangent to the circle $x^2 + y^2 10x 8y + 36 = 0$ and find the point of contact.
- 13. (a) Find the equation of the parabola, f(x), shown opposite.
 - (b) Find the coordinates of P.
 - (c) Hence calculate the shaded area.

