Higher Maths - Homework 8

Non-calculator section:

1. The angle between the line $\sqrt{3} y+x=0$ and the positive direction of the x -axis is
A 30^{0}
B 60^{0}
C 120^{0}
D 150°
2. Given $\tan \mathrm{x}=\frac{1}{3}$ and x is an acute angle, then $\sin 2 \mathrm{x}$ will be equal to
A $\frac{3}{5}$
B $\frac{4}{5}$
C $\frac{6}{\sqrt{10}}$
D $\frac{3}{10}$
3. $3 x^{2}+18 x+11$ expressed in the form $a(x+b)^{2}+c$ is
A $3(x+3)^{2}+2$
B $3(x+3)^{2}-16$
C $3(x+6)^{2}+2$
D $3(x+6)^{2}-16$
4. (a) Show that -2 is a root of $x^{3}-5 x^{2}-8 x+12=0$.
(b) Hence solve fully the equation $x^{3}-5 x^{2}-8 x+12=0$.
5. Find the equation of the tangent to the circle $x^{2}+y^{2}-4 x+6 y-7=0$ at the point $\mathrm{P}(0,1)$.

6. Given $f(x)=2 x^{3}-\frac{4 x^{2}}{\sqrt{x}}$, find the value of $f^{\prime}(4)$.
7. Show that the function $f(x)=2 / 3 x^{3}+4 x^{2}+8 x-1$ is never decreasing.

Calculator section:

8. The roots of $x^{2}-(k+3) x+3 k+1=0$ are equal. Find k.
9. The diagram shows a rhombus PQRS with diagonals $P R$ and $Q S$. PR has equation $y-2 x+2=0$.
(a) Find the equation of the diagonal QS.
(b) Find the point of intersection of the diagonals PR and QS.

10. Solve the equation $3 \cos 2 x-\cos x=2$ for $0 \leq x \leq 360$.
11. $\frac{d y}{d x}=9 x^{2}-4 x+5$ and $y=20$ when $x=2$. Find a formula for y .
12. (a) Show that the equation of the tangent to the curve $y=x^{3}-10 x+15$ at the point where $\mathrm{x}=2$ is $\mathrm{y}=2 \mathrm{x}-1$.
(b) Show that this tangent is also a tangent to the circle $x^{2}+y^{2}-10 x-8 y+36=0$ and find the point of contact.
13. (a) Find the equation of the parabola, $f(x)$, shown opposite.
(b) Find the coordinates of P .
(c) Hence calculate the shaded area.

