Higher Maths - Homework 9

Non-calculator section:

1. A is the point $(-3,0,-4)$ and B is $(-1,-2,-5)$. The magnitude of the vector $\overrightarrow{\mathrm{AB}}$ is
A 9
B 3
C $\sqrt{3}$
D $\sqrt{101}$
2. The value of $2 \tan ^{2}\left(\frac{\pi}{6}\right) \sin \left(\frac{\pi}{6}\right)$ is
A 3
B $\frac{\sqrt{3}}{2}$
C $\frac{1}{3}$
D 1
3. The roots of the equation $\mathrm{kx}^{2}-6 \mathrm{x}+3 \mathrm{k}=0$ are equal. Given $\mathrm{k}>0$, the value of k is
A 36
B 3
C $\sqrt{6}$
D $\sqrt{3}$
4. Find the equation of the perpendicular bisector of the line joining the points $A(-2,6)$ and $B(4,4)$.
5. The curve with equation $y=x^{3}-6 x^{2}+12 x+5$ has only one stationary point. Find this stationary point and determine its nature.
6. The graph of $y=f(x)$ is shown opposite.
$f(x)$ has turning points at $(3,-1)$ and $(6,4)$.
Sketch the graph of $y=f^{\prime}(x)$.

7. Two circles, A and B, have equations

$$
(x+2)^{2}+(y-4)^{2}=20 \text { and } x^{2}+y^{2}-6 x-28 y+160=0
$$

(a) Show that the radius of circle B is $3 \sqrt{5}$.
(b) Show that circles A and B touch at a single point.
(c) Find the coordinates of the point of contact.
8. (a) A curve has equation $y=x^{3}-3 x^{2}+4 x+2$. Find the equation of the tangent to this curve at the point where $x=2$.
(b) Find the coordinates of the point where this tangent meets the curve again.

Calculator section:

9. A recurrence relation is defined as $u_{n+1}=0.4 u_{n}+10, u_{o}=40$.
(a) Find the smallest value of n for which $u_{n}<17$.
(b) Explain why this recurrence relation has a limit and find this limit.
10. (a) The diagram shows the graph of $y=a \cos b x+c$.
Write down the values of a, b and c .

(c) Find the coordinates of P and Q , the points of intersection of the graph in (a) with the graph $y=5 \sin x$.

11. The diagram shows the graph of $y=f(x)$.
(a) Find a formula for $\mathrm{f}(\mathrm{x})$.
(b) Calculate the shaded area.

12. (a) Express $2 \cos \mathrm{x}+4 \sin \mathrm{x}$ in the form $\mathrm{k} \cos (\mathrm{x}+\alpha)$ where $\mathrm{k}>0$ and $0 \leq \alpha \leq 360$.
(b) Write down the maximum value of $2 \cos x+4 \sin x$ and the value of x at which this maximum occurs.
