Higher Mathematics

Unit 1

1. PQRS is a parallelogram whose diagonals meet at E .
P is the point $(-2,2), \mathrm{Q}$ is $(0,8)$ and E is $(2,4)$.
Find the equation of the line RS.

2. The diagram shows part of the line
$\sqrt{3} y=-3 x+6$.
Angle a^{0} is equal to

3. A line $A B$ has equation $3 x-2 y-5=0$. Find the equation of the line perpendicular to AB which passes through the point $(-4,2)$.
4. Find the equation of the perpendicular bisector of the line joining the points $A(-3,1)$ and $B(5,-3)$.
5. A triangle ABC has vertices $\mathrm{A}(-1,1), \mathrm{B}(9,1)$ and $\mathrm{C}(3,-7)$.
(a) Find the equation of the median BD.
(b) Write down the equation of the perpendicular bisector of AB .
(c) Find the coordinates of the point of intersection of these two points.

6. The diagram shows the graph of $y=f(x)$.

Sketch the graph of $y=5-f(x)$.

7. Part of the graph of $y=g(x)$ is shown.

On separate diagrams sketch the graphs Of
(i) $y=-3 g(x)$
(ii) $\mathrm{y}=\mathrm{g}(\mathrm{x}-6)$
(iii) $y=f^{\prime}(x)$

8. The functions f and g are defined on suitable domains with

$$
f(x)=\frac{1}{x^{2}-1} \quad \text { and } \quad g(x)=x+1
$$

(a) $h(x)=g(f(x))$. Find an expression for $h(x)$. Give your answer as a single fraction.
(b) State a suitable domain for $\mathrm{h}(\mathrm{x})$.
9. $f(x)=2 x-6 \quad g(x)=4-3 x \quad h(x)=\frac{1}{6}(2-x)$
(a) $k(x)=f(g(x))$. Find $k(x)$.
(b) Find a formula for $\mathrm{h}(\mathrm{k}(\mathrm{x})$).
(c) What is the connection between h and k ?
10. Solve the following equations.
(a) $2 \sin 2 \mathrm{x}-1=0$
$0 \leq x \leq 360$
(b) $2 \cos 2 x+\sqrt{3}=2 \sqrt{3}$
$0 \leq x \leq 2 \pi$
(c) $4 \cos ^{2} x-1=0$
$0 \leq x \leq 2 \pi$
(d) $5 \cos ^{2} x-2 \cos x-3=0$
$0 \leq x \leq 360$
11. (a) The diagram shows the graph of $y=a \cos b x+c$.
Write down the values of a, b and c .
(b) Find the points of intersection of the line $\mathrm{y}=3$ and this curve.

12. $f(x)=\frac{x^{3}-3 x}{\sqrt{x}} \quad$ find $f^{\prime}(4)$
13. (a) Show that the function $f(x)=x^{3}+3 x^{2}+3 x-15$ is never decreasing.
(b) Find the coordinates of the stationary point of $f(x)$.
14. The distance a rocket travels is calculated using the formula $d(t)=2 t^{3}$, where t is the time in seconds after lift-off.
(a) How far has the rocket travelled after 5 seconds?
(b) Calculate the speed of the rocket after 10 seconds.
15. Find the intervals in which $y=x^{3}-6 x^{2}+1$ is increasing.
16. A curve has equation $f(x)=8 x^{3}-3 x^{2}$
(a) Find the stationary points of $f(x)$ and determine their nature.
(b) Find the maximum and minimum values of $f(x)$ in the interval $-2 \leq x \leq 1$.
17. Find the equation of the tangent to the curve

$$
y=\frac{2 x^{2}-10 x}{\sqrt{x}}
$$

at the point where $\mathrm{x}=4$.

18. Find the equation of the tangent to the curve $y=\frac{1}{4} x^{4}-7 x+10$ which makes an angle of 45^{0} with the positive direction of the x -axis.
19.A wind shelter, as shown opposite, has a back, top and two square sides. The total amount of canvas used in the shelter is $96 \mathrm{~m}^{2}$ and the length of each square side is x metres.
(a) If the volume of the shelter is $\mathrm{V} \mathrm{cm}^{3}$, show that $V=x\left(48-x^{2}\right)$.
(b) Find the exact value of x for
 which the shelter has a maximum volume.
20. A recurrence relation is defined as $u_{n+1}=0.6 u_{n}+18, \quad u_{1}=30$
(a) Find the value of u_{0} and u_{2}.
(b) State why this relation has a limit and calculate this limit.
21. The recurrence relations

$$
u_{n+1}=0.8 u_{n}+12 \text { and } v_{n+1}=\mathrm{av}_{\mathrm{n}}+18
$$

have the same limit. Find the value of a.
22. A recurrence relation is defined as $u_{n}=0.85 u_{n-1}+30, u_{o}=40$.
(a) Find the smallest value of n such that $u_{n}>110$.
(b) Find the limit of this recurrence relation, stating why a limit exists.
23. A recurrence relation is defined as $u_{n+1}=a u_{n}+b$.
(a) Given $u_{1}=32, u_{2}=20$ and $u_{3}=17$, find the values of a and b.
(b) The limit of the recurrence relation in part (a) is the same as the limit of $v_{n+1}=p v_{n}+10$. Find the value of p.
24. A patient is injected with 50 ml of an antibiotic drug. Every 6 hours 60% of the drug passes out of her bloodstream. To compensate for this an extra 15 ml of antibiotic is given every 6 hours.
(a) Find a recurrence relation for the amount of drug in the patient's bloodstream.
(b) Calculate the amount of antibiotic remaining in the bloodstream after one day.

