Higher-Further Differentiation.

1. Differentiate $(1+2 \sin x)^{4}$ with respect to x.
2. An open cuboid measures internally x units by $2 x$ units by h units and has an inner surface area of 12 units 2.

a) Show that the volume, V units 3, of the cuboid is given by

$$
\begin{equation*}
V(x)=\frac{2}{3} x\left(6-x^{2}\right) . \tag{3}
\end{equation*}
$$

b) Find the exact value of x for which this volume is a maximum.
3. Given that $y=\sqrt{3 x^{2}+2}$, find $\frac{d y}{d x}$
4. If $y=\frac{1}{x^{3}}-\cos 2 x, x \neq 0$, find $\frac{d y}{d x}$
5. Given that $f(x)=(\sin x+1)^{2}$, find the exact value of $f^{\prime}\left(\frac{\pi}{6}\right)$

