Higher-Further Differentiation.

- 1. Differentiate $(1+2\sin x)^4$ with respect to x.
- 2. An open cuboid measures internally x units by 2x units by h units and has an inner surface area of 12 units². h

a) Show that the volume, V units³, of the cuboid is given by $V(x) = \frac{2}{3}x(6-x^{2}).$ (3)

b) Find the exact value of x for which this volume is a maximum. (5)

3. Given that
$$y = \sqrt{3x^2 + 2}$$
, find $\frac{dy}{dx}$ (3)

4. If
$$y = \frac{1}{x^3} - \cos 2x$$
, $x \neq 0$, find $\frac{dy}{dx}$ (4)

5. Given that $f(x) = (\sin x + 1)^2$, find the exact value of $f'\left(\frac{\pi}{6}\right)$ (3)

TOTAL (20)

