Higher Recurrence Relations.

- 1. The terms of a sequence satisfy $U_{n+1} = kU_n + 6$. Find the value of k which produces a sequence with a limit of 5. (2)
- 2.A sequence is defined by the recurrence relation $U_{n+1} = \frac{1}{3} U_n + 9, U_o = 0.$ a) Calculate the values of U_1 , U_2 and U_3 .As $n \to \infty$ the sequence approachs a limit q.b) Find the exact value of q
- 3. A recurrence relation is defined by $U_{n+1} = pU_n + q$, where $-1 and <math>U_o = 20$.
 - a) If $U_1 = 18$ and $U_2 = 17$, find the values of p and q. (2)
 - b) Find the limit of this recurrence relation as $n \to \infty$ (2)
- 4. Two equations are defined by the recurrence relations

$$U_{n+1} = 0.2U_n + p$$
, $U_0 = 1$ and
 $V_{n+1} = 0.6V_n + q$, $V_0 = 1$

a) Explain why each of these sequences has a limit. (1	1)
--	----

b) If both these sequences have the same limit, express p in terms of q. (3)

A doctor administers 20ml of a drug to a patient each day. Over the same period it is estimated that 75% of the drug in the patient's bloodstream is removed. If the level in the bloodstream rises above 30ml, the drug becomes toxic.

(a) Write down a recurrence relation that describes this situation. (3)
(b) Will it be safe to continue to administer this drug in the long term (2)

Total (20)