Higher Recurrence Relations.

1. The terms of a sequence satisfy $U_{n+1}=k U_{n}+6$. Find the value of k which produces a sequence with a limit of 5 .
2. A sequence is defined by the recurrence relation
$U_{n+1}=\frac{1}{3} U_{n}+9, U_{o}=0$.
a) Calculate the values of U_{1}, U_{2} and U_{3}.

As $n \rightarrow \infty$ the sequence approachs a limit q.
b) Find the exact value of q
3. A recurrence relation is defined by $U_{n+1}=p U_{n}+q$, where $-1<p<1$ and $U_{o}=20$.
a) If $U_{1}=18$ and $U_{2}=17$, find the values of p and q.
b) Find the limit of this recurrence relation as $n \rightarrow \infty$
4. Two equations are defined by the recurrence relations

$$
\begin{array}{ll}
U_{n+1}=0.2 U_{n}+p, & U_{0}=1 \quad \text { and } \\
V_{n+1}=0.6 V_{n}+q, & V_{0}=1
\end{array}
$$

a) Explain why each of these sequences has a limit.
b) If both these sequences have the same limit, express p in terms of q.
5. A doctor administers 20 ml of a drug to a patient each day.

Over the same period it is estimated that 75% of the drug in the patient's bloodstream is removed. If the level in the bloodstream rises above 30 ml , the drug becomes toxic.
(a) Write down a recurrence relation that describes this situation.
(b) Will it be safe to continue to administer this drug in the long term

