Higher Mathematics Unit 2

- 1. Show that (x + 1) is a factor of $2x^3 + 5x^2 2x 5$ and hence factorise $2x^3 + 5x^2 2x 5$ completely.
- 2. Show that 4 is a root of $2x^3 8x^2 8x + 32 = 0$ and hence find the other roots.
- 3. Given (x 2) is a factor of $f(x) = x^3 x^2 + kx + 12$, find the value of k. Hence factorise f(x) completely.
- 4. (a) Given that (x 2) and (x + 2) are both factors of $f(x) = x^3 + x^2 + px + q$, find the values of p and q.
 - (b) Solve f(x) = 0 for these values.

- 6. (a) Express in the form $f(x) = a(x + b)^2 + c$
 - (b) Sketch the graph of each function clearly marking its turning point and where it crosses the y-axis.

(i)
$$f(x) = x^2 - 6x + 15$$
 (ii) $f(x) = 10 - 8x - x^2$ (iii) $f(x) = 3x^2 + 12x - 1$

- 7. Show that the roots of $(t-1)x^2 + 2tx + 4 = 0$ are real for all values of t.
- 8. The roots of $mx^2 + 4mx + 16 = 0$ are equal. Find the value of m given $m \neq 0$.
- 9. (a) Show that the equation (x 1)(x + k) = -4 can be written in the form

$$x^2 + x(k-1) + 4 - k = 0$$

(b) The roots of the equation (x - 1)(x + k) = -4 are equal. Find the values of k.

- 10. A function has equation $f(x) = \frac{1}{2}x^4 + ax^2 + 24x 1$.
 - (a) f(x) has a stationary point when x = -2. Find the value of a.
 - (b) Show that f(x) has no other stationary points.
- 11. (a) Show that x = 2 is a solution to the equation $2x^3 + kx^2 2kx 16 = 0$. (b) Hence find the range of values of k for which all the roots of this equation are real.
- 12. $f'(x) = x^2 4x + 6$ and f(3) = 4. Find a formula for f(x).
- 13. Given $\frac{dy}{dx} = 4x + 6\sqrt{x}$ and y = 50 when x = 4, find a formula for y.
- 14. The diagram shows the graph of $y = x^2 2x 12$.

Calculate the shaded area.

15. The diagram opposite shows the design for the blades of a windmill. All 4 blades are equal in size and are made from aluminium.

A single blade can be described as the area between the line y = 6x and the parabola $y = 2x^2$, as shown. On the diagram each square unit represents $3m^2$

Calculate the total area of aluminium needed to make the blades.

- 12 16. The diagram opposite shows the line y = 3 - 3xand the parabola f(x). y = 3 - 3x(a) Find a formula for f(x). (b) Calculate the shaded area. 17. Given $\tan x = \frac{3}{4}$, find the exact value of 3 (a) $\cos 2x$ (b) $\cos 4x$ 4 2 18. Using the information opposite show that the exact value of $\cos(x + y)$ is $\frac{2\sqrt{5} - 2}{3\sqrt{5}}$ 1 Х
- 19. Solve the equations (a) $3\sin 2x = 3\cos x$ for $0 \le x \le 360$ (b) $2\cos 2x - 3\cos x + 1 = 0$ for $0 \le x \le 360$
- 20. The diagram opposite shows the graph $y = a \sin bx + c$.
 - (a) Write down the values of a, b and c.
 - (b) Find the points of intersection between this curve and the line y = 2 for $0 \le x \le 360$

2

21. The diagram opposite shows the graphs of $y = a\cos bx$ and $y = 3\sin x$.

 2^{\cdot}

1

- (a) Write down the values of a and b.
- (b) Find the coordinates of P and Q.

- 23. (a) Find the equation of the tangent to the circle $x^{2} + y^{2} + 10x - 2y - 19 = 0$ at the point A(1,4).
 - (b) Show that this tangent is also a tangent to the parabola $y = 2x^2 10x + 14$ and find the point of contact.

- 24. (a) A circle has centre (6,5) and radius $\sqrt{17}$. Show that the equation of this circle can be written in the form $x^2 + y^2 - 12x - 10y + 44 = 0$
 - (b) Show that the line y = 4x 2 is a tangent to this circle and find the point of contact.
- 25. (a) A circle has centre (a,0) and radius 3. Write down the equation of this circle.
 - (b) The line y = x is a tangent to this circle. Show that the exact value of a is $\pm 3\sqrt{2}$

26. A is the point (-6,4) and B is (10,-2). Find the equation of the circle which has AB as a diameter.

27. Two circles have equations

$$x^{2} + y^{2} + 4x + 16y - 60 = 0$$
 and $x^{2} + y^{2} - 8x + 4y + 12 = 0$

Show that these circles touch at a single point.

