Higher Mathematics

Unit 2

1. Show that $(x+1)$ is a factor of $2 x^{3}+5 x^{2}-2 x-5$ and hence factorise $2 x^{3}+5 x^{2}-2 x-5$ completely.
2. Show that 4 is a root of $2 x^{3}-8 x^{2}-8 x+32=0$ and hence find the other roots.
3. Given $(x-2)$ is a factor of $f(x)=x^{3}-x^{2}+k x+12$, find the value of k.

Hence factorise $\mathrm{f}(\mathrm{x})$ completely.
4. (a) Given that $(x-2)$ and $(x+2)$ are both factors of $f(x)=x^{3}+x^{2}+p x+q$, find the values of p and q .
(b) Solve $f(x)=0$ for these values.
5. The tangent to the curve $y=x^{3}-7 x+6$ at the point $(-1,12)$ has equation $y+4 x=8$.
Find the coordinates of the other point of intersection of the curve and this tangent.

6. (a) Express in the form $f(x)=a(x+b)^{2}+c$
(b) Sketch the graph of each function clearly marking its turning point and where it crosses the y-axis.
(i) $f(x)=x^{2}-6 x+15$
(ii) $f(x)=10-8 x-x^{2}$
(iii) $f(x)=3 x^{2}+12 x-1$
7. Show that the roots of $(t-1) x^{2}+2 t x+4=0$ are real for all values of t.
8. The roots of $m x^{2}+4 m x+16=0$ are equal. Find the value of m given $m \neq 0$.
9. (a) Show that the equation $(x-1)(x+k)=-4$ can be written in the form

$$
\mathrm{x}^{2}+\mathrm{x}(\mathrm{k}-1)+4-\mathrm{k}=0
$$

(b) The roots of the equation $(x-1)(x+k)=-4$ are equal. Find the values of k.
10. A function has equation $f(x)=\frac{1}{2} x^{4}+a x^{2}+24 x-1$.
(a) $f(x)$ has a stationary point when $x=-2$. Find the value of a.
(b) Show that $\mathrm{f}(\mathrm{x})$ has no other stationary points.
11. (a) Show that $x=2$ is a solution to the equation $2 x^{3}+k x^{2}-2 k x-16=0$.
(b) Hence find the range of values of k for which all the roots of this equation are real.
12. $f^{\prime}(x)=x^{2}-4 x+6$ and $f(3)=4$. Find a formula for $f(x)$.
13. Given $\frac{d y}{d x}=4 x+6 \sqrt{x}$ and $y=50$ when $x=4$, find a formula for y.
14. The diagram shows the graph of $y=x^{2}-2 x-12$.

Calculate the shaded area.

15. The diagram opposite shows the design for the blades of a windmill.
All 4 blades are equal in size and are made from aluminium.

A single blade can be described as the area between the line $y=6 x$ and the parabola $\mathrm{y}=2 \mathrm{x}^{2}$, as shown.
On the diagram each square unit represents $3 \mathrm{~m}^{2}$

Calculate the total area of aluminium needed to make the blades.
16. The diagram opposite shows the line $y=3-3 x$ and the parabola $f(x)$.
(a) Find a formula for $\mathrm{f}(\mathrm{x})$.
(b) Calculate the shaded area.

17. Given $\tan x=\frac{3}{4}$, find the exact value of
(a) $\cos 2 x$
(b) $\cos 4 x$

18. Using the information opposite show that the exact value of $\cos (x+y)$ is $\frac{2 \sqrt{5}-2}{3 \sqrt{5}}$

19. Solve the equations (a) $3 \sin 2 x=3 \cos x$ for $0 \leq x \leq 360$
(b) $2 \cos 2 x-3 \cos x+1=0$ for $0 \leq x \leq 360$
20. The diagram opposite shows the graph $y=\operatorname{asin} b x+c$.
(a) Write down the values of a, b and c .
(b) Find the points of intersection between this curve and the line $\mathrm{y}=2$ for $0 \leq \mathrm{x} \leq 360$

21. The diagram opposite shows the graphs of $y=a \cos b x$ and $y=3 \sin x$.
(a) Write down the values of a and b.
(b) Find the coordinates of P and Q .

22. Find the equation of the tangent to the circle $x^{2}+y^{2}-8 x+4 y-33=0$ at the point $P(1,-4)$.

23. (a) Find the equation of the tangent to the circle $x^{2}+y^{2}+10 x-2 y-19=0$ at the point $A(1,4)$.
(b) Show that this tangent is also a tangent to the parabola $y=2 x^{2}-10 x+14$ and find the point of contact.

24. (a) A circle has centre $(6,5)$ and radius $\sqrt{17}$. Show that the equation of this circle can be written in the form

$$
x^{2}+y^{2}-12 x-10 y+44=0
$$

(b) Show that the line $y=4 x-2$ is a tangent to this circle and find the point of contact.
25. (a) A circle has centre ($\mathrm{a}, 0$) and radius 3 . Write down the equation of this circle.
(b) The line $\mathrm{y}=\mathrm{x}$ is a tangent to this circle. Show that the exact value of a is $\pm 3 \sqrt{2}$
26. A is the point $(-6,4)$ and B is $(10,-2)$. Find the equation of the circle which has AB as a diameter.

27. Two circles have equations

$$
x^{2}+y^{2}+4 x+16 y-60=0 \quad \text { and } \quad x^{2}+y^{2}-8 x+4 y+12=0
$$

Show that these circles touch at a single point.
28. A circle, centre Q , has equation $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{y}-1=0$.
(a) Find the equation of the tangent to this circle at the point $\mathrm{P}(1,2)$.
(a) There are two tangents to the circle which are parallel to the radius PQ.
Find the equations of these tangents.

