Higher Mathematics <u>Unit 3</u>

2. $\mathbf{u} = 3\mathbf{i} - 3\mathbf{j} + \sqrt{7} \mathbf{k}$ and $\mathbf{v} = \mathbf{i} + \mathbf{a}\mathbf{j} + \sqrt{8} \mathbf{k}$. If $|\mathbf{u}| = |\mathbf{v}|$ find the value of a.

- 3. (a) P has coordinates (2,-1,4) and R has coordinates (7,4,-1). Q divides PR in the ratio 3:2. Find the coordinates of Q.
 - (b) T is (-1,0,-3) and U is (-10,-3,-9). Show that Q,T and U are collinear, stating the ratio of QT:TU.
- 4. (a) P is the point (1,2,-4) and Q is the point (-4,2,6). A divides PQ in the ratio 2:3. Find the coordinates of A.
 - (b) B is the point (u,-1,-1) and C is (11,-7,-3). Given A, B and C are collinear, Find u.
- 5. Show that the vectors $\mathbf{a} = \mathbf{i} 3\mathbf{j} + 4\mathbf{k}$ and $\mathbf{b} = -6\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ are perpendicular.

6.
$$\mathbf{u} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$.

- (a) Find the vectors $2\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$
- (b) Show that the vectors $2\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$ are perpendicular.
- 7. P has coordinates (1,-1,-1), Q is (3,0,1) and R is (7,4,3).

Calculate the size of angle PQR.

8. A is the point (-1,2,4), B is (0,4,2) and C 1s (-4,0,2).

Calculate the size of angle ABC.

B C V O

u

9. Two vectors **u** and **v** are such that ||=2 and $|\mathbf{v}|=6$.

Given that $2\mathbf{u} \cdot (\mathbf{u} + \mathbf{v}) = -4$, show that angle $\theta = 120^{\circ}$.

- 10. The diagram shows two vectors **a** and **b** with ||=2 and $|\mathbf{b}|=3\sqrt{3}$. (a) Evaluate (a) **a.a** (b) **b.b** (c) **a.b** (b) Given $\mathbf{p} = 2\mathbf{a} + 3\mathbf{b}$ evaluate **p.p**.
- 11. Find the derivative of

(a) $y = (6x - 1)^4$ (b) $f(x) = 4\sqrt{3x - 1}$ (c) $y = \frac{6}{(2x - 5)^2}$ (d) $f(x) = 4\cos 3x$ (e) $f(x) = 3\sin^2 x$

- 12. A curve has equation $y = (3x + 2)^4$. Find the equation of the tangent to this curve at the point where x = -1.
- 13. Show that the tangent to the curve $y = 4\sin(3x \frac{\pi}{3})$ at the point where $x = \frac{\pi}{6}$ has equation $y 2 = 6\sqrt{3}(x \frac{\pi}{6})$.
- 14. Find the values of x for which the function $f(x) = \frac{1}{6}(2x-3)^3 x$ is increasing.
- 15. (a) $\int (3x-4)^3 dx$ (b) $\int \sqrt{4x+3} dx$ (c) $\int \frac{6}{(1-2x)^2} dx$ (d) $\int \sin(6x-2) dx$

16. Evaluate
$$\int_{1}^{2} \frac{8}{(4x-1)^{3}} dx$$

17. $\frac{dy}{dx} = \frac{1}{\sqrt{4x-3}}$ and the curve passes through the point (1,2). Find a formula for y.

18. $\frac{dy}{dx} = 8\cos 4x$. This curve passes through the point $\left(\frac{\pi}{6}, 6\right)$. Find y.

20. (a) Express $\sqrt{5} \cos x + 2\sin x$ in the form kcos (x – a) where k > 0 and 0 $\leq a \leq 360$

- (b) Hence write down the maximum value of $2 + \sqrt{5} \cos x + 2\sin x$ and the corresponding value of x in the range $0 \le x \le 360$.
- 21. (a) Express $\sqrt{3} \cos x \sin x$ in the form $k\cos(x + a)$ where k > 0 and $0 \le x \le 360$
 - (b) Hence solve the equation $\sqrt{3} \cos x \sin x = -1$ for $0 \le x \le 360$.
- 22. (a) Express $\cos x + \sqrt{3} \sin x$ in the form $k\cos(x a)$ where k > 0 and $0 \le a \le 360$.
 - (b) Hence sketch the graph of $y = \cos x + \sqrt{3} \sin x$ for $0 \le x \le 360$.

- 23. Part of the graph of $y = 2\sin x + 5\cos x$ is shown in the diagram.
 - (a) Express $2\sin x + 5\cos x$ in the form $k\sin(x + a)^\circ$ where k > 0 and $0 \le a \le 360$.
 - (b) Find the coordinates of the minimum turning point P.

24. Simplify

(a) $\log_9 12 + \log_9 6 - \log_9 8$ (b) $\frac{2}{3} \log_{10} 8 - \frac{1}{4} \log_{10} 16 + \log_{10} 50$

25. Solve for x > 0

(a) $\log_2 x + \log_2 (x - 6) = 4$ (b) $\log_3 4x - \log_3 (x + 1) = 1$

- 26. Find x in each of the following (x > 0)
 - (a) $2\log_x 4 + \log_x 2 = 5$ (b) $\frac{3}{4}\log_x 81 2\log_x 8 = 3$
- 27. A curve has equation $y = log_2 (x + 4) 3$. Find the coordinates of the points where this curve cuts the x and y axes.
- 28. The mass, M grams, of a radioactive isotope after a time of t years, is given by the formula $M = M_0 e^{-kt}$ where M_0 is the initial mass of the isotope.

In 8 years a mass of 40 grams of the isotope is reduced to 36 grams.

- (a) Calculate k.
- (b) Calculate the half-life of the substance i.e. the time taken for half the substance to decay.
- 29. The value, V (£million), of an aeroplane is given by the formula $V = 3.5e^{-0.095t}$ where t is the number of years after the aeroplane is put into service.
 - (a) Calculate the value of the aeroplane when it was built.
 - (b) How long, to the nearest year, will it take for the aeroplane to fall to 40% of its original value?

