Logarithms

1. Simplify

(a)
$$\log_4 2 + \log_4 8$$

(b)
$$\log_3 108 - \log_3 4$$

(c)
$$\log_5 50 + \log_5 2 - \log_5 4$$

(d)
$$\log_9 3 - \log_9 6 + \log_9 18$$

(e)
$$\log_4 10 + 3\log_4 2 - \frac{1}{2} \log_4 25$$

(d)
$$\log_9 3 - \log_9 6 + \log_9 18$$
 (e) $\log_4 10 + 3\log_4 2 - \frac{1}{2}\log_4 25$ (f) $\frac{3}{4}\log_{10} 16 - \frac{2}{3}\log_{10} 8 + \log_{10} 5$

2. Solve for x > 0

(a)
$$\log_a 5 + \log_a 2x = \log_a 60$$

(b)
$$2\log_a 3 + \log_a x = \log_a 36$$

(c)
$$3\log_4 2 + \log_4 x = 1$$

(d)
$$\frac{1}{2} \log_3 16 + 2 \log_3 x = 2$$

(e)
$$\log_a x + \log_a (x + 1) = \log_a 2$$

(f)
$$\log_a x + \log_a (x + 4) = \log_a 12$$

(g)
$$\log_2 x + \log_2 (x - 3) = 2$$

(g)
$$\log_2 x + \log_2 (x - 3) = 2$$

 (h) $\log_5 (x + 3) + \log_5 (x - 1) = 1$

(i)
$$\log_3 6x - \log_3 (x - 2) = 2$$

(j)
$$2\log_2 x - \log_2 (x - 1) = 2$$

3. Find x in each of the following (x > 0)

(a)
$$4\log_x 6 - 2\log_x 4 = 1$$

(b)
$$2\log_x 3 + \log_x 4 = 2$$

(c)
$$\frac{1}{2} \log_x 64 + 2\log_x 2 = 5$$
 (d) $2\log_x 6 - \frac{2}{3} \log_x 8 = 2$

(d)
$$2\log_x 6 - \frac{2}{3}\log_x 8 = 2$$

(e)
$$3\log_x 4 - 2\log_x 2 = 2$$

(f)
$$\frac{3}{4} \log_x 81 - \frac{1}{2} \log_x 64 = 3$$

- 4. Given $\frac{1}{2} \log_a y = \log_a (x 1) + 2\log_a 3$, show that $y = 81(x 1)^2$.
- 5. Given $2\log_m n = \log_m 16 + 1$, show that $n = 4\sqrt{m}$
- 6. Given $3\log_a y = 2\log_a (x 1) + 6\log_a 2$, show that $y = 4\sqrt[3]{(x 1)^2}$
- 7. Find where the following curves cut the x-axis.

(a)
$$y = \log_4 x - 2$$

(b)
$$y = log_2(x-4) - 1$$

(c)
$$y = log_3(x + 1) - 2$$

(d)
$$y = log_2(x-2) - 4$$

8. Find where the following curves cut the y-axis.

(a)
$$y = log_2(x + 4) + 1$$

(b)
$$y = log_3 (x + 27) + 5$$

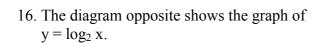
(c)
$$y = -\log_4(x + 16) - 2$$

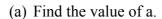
- 9. The number of bacteria present in a beaker, during an experiment can be measured using the formula $N(t) = 30e^{1.25t}$ where t is the number of hours passed.
 - (a) How many bacteria are in the beaker at the start of the experiment?
 - (b) Calculate the number of bacteria present after 5 hours.
 - (c) How long will it take for the number of bacteria present to treble?
- 10. The mass, M grams, of a radioactive isotope after a time of t years, is given by the formula $M = M_0 e^{-kt}$ where M_0 is the initial mass of the isotope.
 - In 5 years a mass of 10 grams of the isotope is reduced to 8 grams.
 - (a) Calculate k.
 - (b) Calculate the half-life of the substance i.e. the time taken for half the substance to decay.
- 11. A cup of coffee cools according to the law $P_t = P_o e^{-kt}$, where P_o is the initial temperature of the coffee and P_t is the temperature after t minutes.
 - (a) A cup of coffee cools from 80° C to 60° C in a time of 15 minutes. Calculate k.
 - (b) By how many degrees will the cup of coffee cool in the next 15 minutes?
- 12. A fire spreads according to the law $A = A_0 e^{kt}$ where A_0 is the area covered by the fire when it is first measured and A is the area covered after t hours.
 - (a) If it takes $1\frac{1}{2}$ hours for the fire to double in area, find k.
 - (b) A bush fire covers an area of 800 km². If not tackled, calculate the area the fire will cover 4 hours later.
- 13. The value, V (£million), of a container ship is given by the formula $V = 120e^{-0.065t}$ where t is the number of years after the ship is launched.
 - (a) Calculate the value of the ship when it was launched.
 - (b) Calculate the percentage reduction in value of the ship after 6 years.
- 14. A cell culture grows at a rate given by the formula $y(t) = Ae^{kt}$ where A is the initial number of cells and y(t) is the number of cells after t hours.
 - (a) It takes 24 hours for 500 cells to increase in number to 800. Find k.
 - (b) Calculate the time taken for the number of cells to double.

15. Dangerous blue algae are spreading over the surface of a lake according to the formula $A_t = A_o e^{kt}$ where A_o is the initial area covered by the algae and A_t is the area covered after t days.

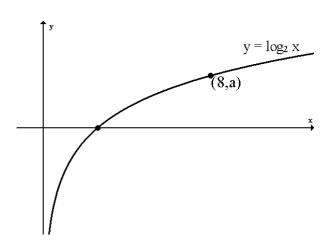
When first noticed the algae covered an area of 200 square metres. One week later the algae covered an area of 320 square metres.

- (a) Calculate the value of k.
- (b) Calculate, to the nearest day, how long it will take for the area of algae to increase by a further 500 square metres.

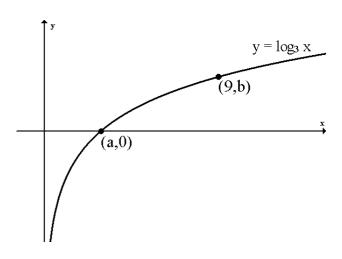




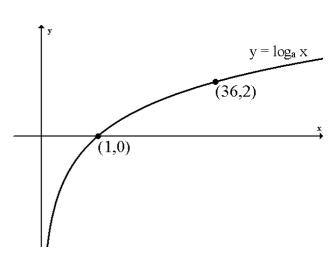
- (b) Sketch the graph of $y = \log_2 x 3$
- (c) Sketch the graph of $y = log_2 4x$



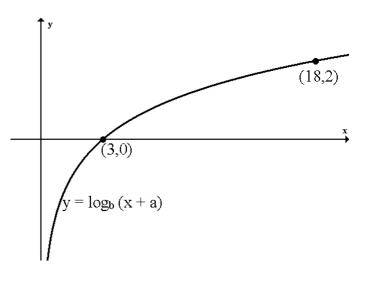
- 17. The diagram opposite shows the graph of $y = log_3 x$.
 - (a) Find a and b.
 - (b) Sketch the graph of $y = log_3 27x$
 - (c) Sketch the graph of $y = log_3 \frac{1}{x}$



- 18. The diagram shows the graph of $y = log_a x$
 - (a) Determine the value of a.
 - (b) Draw the graph of $y = log_a 6x^2$ when a takes this value.

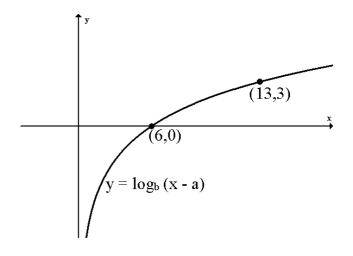


- 19. The diagram opposite shows the graph of $y = log_b(x + a)$
 - (a) Find the value of a.
 - (b) Find the value of b.



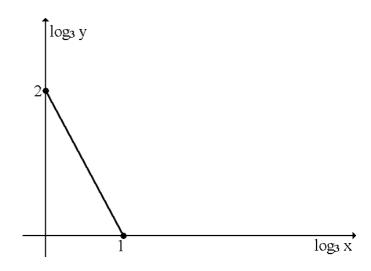
20. The diagram shows the graph of $y = log_b(x - a)$.

Find a and b.



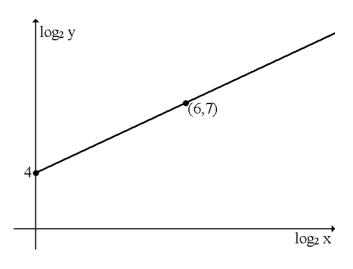
21. The graph opposite illustrates the law $y = kx^n$.

Find the values of k and n.



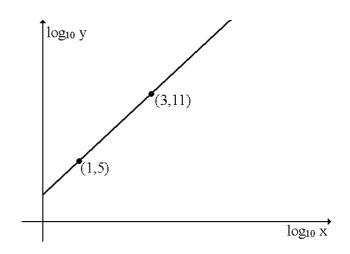
22. The graph opposite illustrates the law $y = kx^n$.

Find the values of k and n.

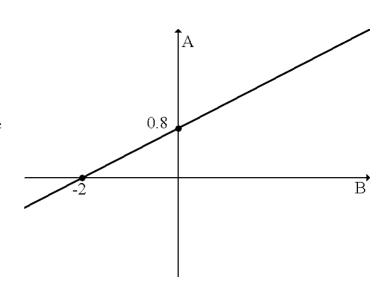


23. The graph opposite illustrates the law $y = kx^n$.

Find the values of k and n.

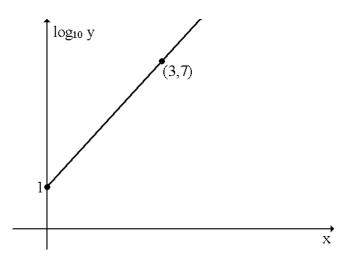


- 24. The graph opposite shows the results of an experiment.
 - (a) Write down the equation of the line in terms of A and B.
 - (b) Given $A = log_e$ a and $B = log_e$ b, show that a and b satisfy a relationship of the form $a = kb^n$ and state the values of k and n.



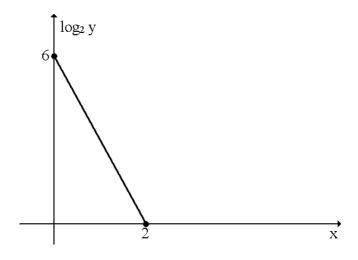
25. The graph opposite illustrates the law $y = ab^x$.

Find the values of a and b.



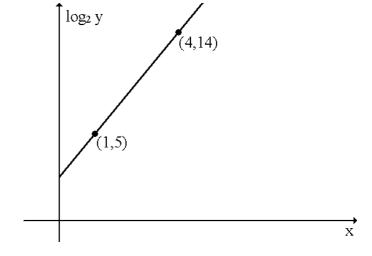
26. The graph opposite illustrates the law $y = ab^x$.

Find the values of a and b.



27. The graph opposite illustrates the law $y = ab^x$.

Find the values of a and b.



- 28. Given $\log \frac{1}{2}(a+b) = \frac{1}{2}(\log a + \log b)$, show that $(a+b)^2 = 4ab$.
- 29. $\log_x a + \log_x b = u$ and $\log_x a \log_x b = w$. Show that $a = x^{\frac{1}{2}(u+w)}$
- 30. If $log_a p = cos^2 x$ and $log_a r = sin^2 x$, show that pr = a.