1 Simplify:
(a) $\log _{b} 10+\log _{b} 4$
(b) $\log _{4} 320-\log _{4} 5$
(c) $2 \log _{3} 6-\log _{3} 4$

2 (a) Write down an expression for the exact value of $z$, if $\log _{e} z=6$.
(b) Find $p$, if $p=\frac{\log _{5} 8}{\log _{5} 2}$.
(c) Solve $4^{x+1}=3^{2-x}$.

3 A developing country had a campaign to encourage people to purchase a refrigerator. The percentage, $y$, of households possessing refrigerators $t$ years after the start of the campaign, is modelled by $y=100-95 e^{-0.15 t}$.
(a) (i) Find the percentage of households that had refrigerators after 5 years.
(ii) Find the percentage of households that already had refrigerators at the start of the campaign.
(a) How many years will need to elapse before $90 \%$ of households have a refrigerator?


4 The air resistance acting on a particle was measured while it moved through the atmosphere at various speeds. The results are given in the table below.

| Speed | Air Resistance |
| :---: | :---: |
| $\boldsymbol{v}\left(\mathbf{m s}^{\mathbf{- 1}}\right)$ | $\boldsymbol{R}$ (Newtons) |
| 10 | 4.5 |
| 25 | 28.1 |
| 40 | 72 |
| 70 | 220.5 |
| 80 | 288 |

(a) It is believed that a relationship of the form $R=k v^{n}$ exists between $R$ and $v, k$ and $n$ being constants.
By drawing a suitable straight line graph, verify that the relationship $R=k v^{n}$ holds.
(b) Determine the values of $k$ and $n$.
(c) Find the speed when the air resistance is 200.0 Newtons.

