LOGS & EXPONENTIALS

SET 2

1 Find the values of:

(a)	log ₉ 81	(b)	log ₆ 6	(c)	log ₃ 1	(d)	$\log_2 \frac{1}{2}$	4	(e)	log ₈₁ 9
(f)	$\log_2 16 - 1$	log ₂ 4	(g)	$2\log_{10}$	$5 + 2\log_{10}2$	((h) $\frac{1}{2}$	$\frac{1}{2}\log_2$	16 –	$\frac{1}{3}\log_2 8$

2 Solve for x, round your answers to 2 decimal places. (a) $3^x = 7$ (b) $8^x = 5$ (c) $\ln(x) + \ln(4x) - \ln(2x) = 1$

- 3 Given $\log_a 8 + \log_a 4 \log_a 2 = 2$, find *a*.
- 4 (a) The variables x and y are connected by a relationship of the form y = axⁿ, where a and n are constants.
 Show that there is a linear relationship between log₁₀y and log₁₀x.
 - (b) From an experiment some data was obtained.

The table shows the data which lies on the line of best fit.

x	1	4	9	16
У	4.0	2.0	1.3	1.0

The variables *a* and *n* in the above table are connected by a relationship of the form $y = ax^n$.

Determine the values of *a* and *n*.

5 The mass of a radioactive element decreases at a rate given by $m_t = m_0 e^{-0.01t}$, where t

is the time in years.

Find:

- (a) the mass of 250mg of the element after a century,
- (b) the half-life of the element.

