1 Find the values of:
(a) $\quad \log _{9} 81$
(b) $\log _{6} 6$
(c) $\log _{3} 1$
(d) $\quad \log _{2} 1 / 4$
(e) $\log _{81} 9$
(f) $\log _{2} 16-\log _{2} 4$
(g) $2 \log _{10} 5+2 \log _{10} 2$
(h) $\frac{1}{2} \log _{2} 16-\frac{1}{3} \log _{2} 8$

2 Solve for x, round your answers to 2 decimal places.
(a) $3^{x}=7$
(b) $8^{x}=5$
(c) $\ln (x)+\ln (4 x)-\ln (2 x)=1$

3 Given $\log _{a} 8+\log _{a} 4-\log _{a} 2=2$, find a.

4 (a) The variables x and y are connected by a relationship of the form $\mathrm{y}=a x^{n}$, where a and n are constants.

Show that there is a linear relationship between $\log _{10} y$ and $\log _{10} x$.
(b) From an experiment some data was obtained.

The table shows the data which lies on the line of best fit.

x	1	4	9	16
y	4.0	2.0	1.3	1.0

The variables a and n in the above table are connected by a relationship of the form $y=a x^{n}$.

Determine the values of a and n.

5 The mass of a radioactive element decreases at a rate given by $m_{t}=m_{0} e^{-0.01 t}$, where t is the time in years.
Find:
(a) the mass of 250 mg of the element after a century,
(b) the half-life of the element.

