I can find the points of intersection with the x-axiscan find the maximum and minimum values and corresponding values of x
7.5 page 58I can use graphs of the form $y=\sin (x+r)^{\circ}+s$ or $y=\cos (x+r)^{\circ}+s$I can find the equation from the graphI can find the point of intersection with the y-axisI can find the maximum and minimum values and corresponding values of x
7.6
page 61
\square I can use graphs of the form $y=p \sin (x+r)^{\circ}+s$ or $y=p \cos (x+r)^{\circ}+s$I can find the equation from the graphI can find the maximum and minimum values and corresponding values of xI can find the point of intersection with the y-axis

Trigonometry

8.1 page 63
\square I can use the four-quadrant diagram to find angles with a given sine, cosine or tangentI can rearrange an equation to find the sine, cosine or tangent of an angleI can find the points of intersection of a trigonometric graph and a straight line by solving an appropriate equation
8.2 page 64
\square I can use the four-quadrant diagram to find angles with a given sine, cosine or tangent, and hence solve an equation
\square I can rearrange an equation to find the sine, cosine or tangent of an angleI can find the points of intersection of a trigonometric graph and a straight line by solving an appropriate equation
8.3 page 66
\square I can use the exact values for the sine, cosine and tangent of $30^{\circ}, 45^{\circ}$ and 60° to find exact values for the sine, cosine and tangent of negative angles and angles greater than 90°I can use exact values to simplify expressions
8.4 page 67I can use exact values for the sine, cosine and tangent of $30^{\circ}, 45^{\circ}$ and 60° to solve equations
\square I can find the sine, cosine and tangent of an angle in a right-angled triangle, using Pythagoras' theorem where necessaryI I can calculate the value of other trigonometri ratios from the value of one ratio

8.6

page 69
\square I can use the identities $\sin ^{2} x+\cos ^{2} x \equiv 1$ and $\tan x \equiv \frac{\sin x}{\cos x}$
8.7 page 70I can solve quadratic trigonometric equationsI can solve a trigonometric equation by using the identity $\sin ^{2} x+\cos ^{2} x \equiv 1$ to form a quadratic equation in $\sin x$ or $\cos x$
8.8 page 71
\square I can use graphs of the form $y=p \sin (x+r)^{\circ}+s$ or $y=p \cos (x+r)^{\circ}+s$I can find the maximum and minimum values and corresponding values of x
\square I can find the points of intersection with the x-axisI can find the point of intersection with the y-axis

Algebra

9.1 page 73
\square I can use functional notation
9.2 page 75

I can construct an expression from given informationsecond
9.3 page 77I can form and solve linear equationsI I can form and solve quadratic equations
\square I can solve word problems
9.4 page 80
\square I can multiply, divide and simplify expressions involving surds and indicesI can rewrite an expression involving surds into one involving indices
\square I can rewrite a fractional expression as a sum of separate terms, by dividing each term in the numerator by the denominator

Progress to Higher Mathematics
Checklist of Learning Outcomes

Preliminaries

I can find the exact value of the area of a triangle
1.1 page 1

\square I can rewrite an expression with brackets, by expanding the brackets and collecting like terms
1.2 page 2
\square I can solve linear equations with brackets, by expanding the brackets and then collecting terms together on one side of the equation
\square I can solve linear equations with fractions, by multiplying each term by the same expression and then collecting terms together on one side of the equation
1.3 page 2
\square I can solve simultaneous equations given in various formats, using the method of substitution or the method of elimination
1.4 page 3
\square I can rewrite an expression with fractional terms in brackets, by expanding the brackets and collecting like terms
\square I can rewrite a compound fractional expression as a simple fraction, by multiplying every term in the numerator and the denominator by the same expression
1.5 page 4
\square I can simplify expressions containing surdsI can simplify an expression by division or by rationalising the denominator
1.6
page 5can evaluate fractional and negative indicescan simplify expressions containing indices page 6
\square I can find exact values for the sine, cosine and langent of $30^{\circ}, 45^{\circ}$ and 60°

Solving equations

2.1 page 8
\square I can solve equations where the unknown occurs in a denominator
\square I can remove the denominators by multiplying each term by the same expression

2.2 page 8

\square I can solve quadratic equations by factorising into the form $(x-a)(x-b)$
\square I can solve quadratic equations not in standard form by rearranging the terms
2.3 page 9
\square I can solve quadratic equations of the form $a x^{2}+b x+c=0$ by factorising
\square I can solve quadratic equations not in standard form by rearranging the terms

2.4 page 10

I can use a substitution in order to convert a more general equation into a quadratic equation
\square I can solve the resulting quadratic equation and hence solve the original equation

2.5
 page 10

\square I can solve equations of the form $k(x-p)^{2}=q$ by finding the square root of each side
\square I can solve similar equations with a higher power by taking the appropriate root of each side

2.6 page 11

\square I can solve a cubic equation given in factorised formI can solve a cubic equation by factorising
\square I can solve a cubic equation by rearranging and factorising

Lines and circles

3.1 page 12
\square I can find the gradient of the line joining two points
\square I can find the gradient m of a line by converting the equation to the form $y=m x+c$
\square I can find the equation of a line through a given point with a given gradient, or through two given points
\square I can find the points of intersection of a line with the x - and y-axesI can convert the equation of a line into a different form

3.2 page 13

\square I can find and use equations of the form $x=k$ for lines parallel to the y-axisI can find and use equations of the form $y=l$ for lines parallel to the x-axis
3.3 page 14
\square I can use the fact that parallel lines have equal gradients or that lines with equations of the form $a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$ are parallelI can find the equation of a line through a given point parallel to a given line
3.4
page 15I can find the midpoint of a line segmentI can find the length of a line segmentcan solve problems involving midpoints and lengths of line segments
page 16I can determine whether given points are collinearI can use properties of collinear points
3.6 page 17
\square I can use the equation $m=\tan \theta$ connecting the gradient m of a line and the angle θ between the line and the positive x-axis

3.7 page 20

\square I can use circle diagrams plotted in the coordinate plane
\square I can use diameter and tangent properties of a circleI can calculate the distance between circles

Graph sketching

4.1 page 23
\square I can sketch the graph of a parabola with equation given in the form $y=k(x-a)(x-b)$I can use the sign of k to find the shape of the curveI can label the y-interceptI can sketch the graph of a parabola by factorising into the form $y=k(x-a)(x-b)$
4.2 page 24
\square I can sketch the graph of a parabola with equation given in the form $y=k(x-p)^{2}+q$curveI can label the turning pointI can label the y-interceptI can label the zeros
4.3 page 26I can sketch the graph of a cubic curve using the sign of the coefficient of x^{3} to find the shape of the curveI can label the y-interceptI can label the zeros

Equations of curves

5.1 page 28
\square I can find an equation of a parabola in the form $y=k x^{2}+q$ from a graphI can find q from the y-intercept or by moving the curve $y=k x^{2}$ in a direction parallel to the y-axisI can find k by substituting the coordinates of a point on the curve into the equationI can check the sign of k from the shape of the curve
5.2 page 30
\square I can find an equation of a parabola in the form $y=k(x-a)(x-b)$ from a graphI I can find a and b from the zerosI can find k from the y-intercept or by substituting the coordinates of a point on the curve into the equationI can check the sign of k from the shape of the curve
5.3 page 32
\square I can write down the coordinates of the turning point of a parabola given in the form $y=k(x-p)^{2}+q$
\square I can use the sign of k to determine the nature of the turning point
5.4 page 32
\square I can find an equation of a parabola in the form $y=k(x-p)^{2}+q$ from a graphI can find p and q from the turning pointI can find k from the y-intercept or by substituting the coordinates of a point on the curve into the equationI can check the sign of k from the shape of the curve
5.5 page 34
\square I can find an equation of a parabola from the information given in a graphI can use the form $y=k(x-a)(x-b)$ when the zeros are given
\square I can use the form $y=k(x-p)^{2}+q$ when the turning point is givenI can find an equation of the form $y=a x^{2}+b x+c$ by expanding brackets and collecting like terms
5.6 page 35
\square I can change the equation of a parabola from the form $y=k(x-a)(x-b)$ to the form $y=k(x-p)^{2}+q$I can use the axis of symmetry of a parabolaI can find p and q from the turning point
5.7
page 38
\square I can find an equation of a cubic curve in the form $y=k(x-a)(x-b)(x-c)$ from a given graphI can find a, b and c from the zerosI can find k from the y-intercept or by substituting the coordinates of a point on the curve into the equationI can check the sign of k from the shape of the curv

Intersecting lines and curves

6.1 page 40

\square I can find the point of intersection of two straight lines
6.2 page 43
\square I can find the points of intersection of a straight line and a parabola
6.3 page 46

I can find the points of intersection of two parabolas
6.4 page 49
\square I can find the points of intersection of a straight line and a cubic curve

Trigonometric graphs

7.1 page 51
\square I can sketch the graphs $y=\sin x, y=\cos x$ and $y=\tan x$
\square I can use a sketch graph to solve simple trigonometric equations
7.2 page 52
\square I can use graphs of the form $y=p \sin q x^{\circ}$ or $y=p \cos q x^{\circ}$I can find the equation from the graph
\square I can find the points of intersection with the x-axisI can find the maximum and minimum values and corresponding values of x
7.3 page 54I can use graphs of the form $y=p \sin x^{\circ}+s$ or $y=p \cos x^{\circ}+s$I can find the equation from the graphI can find the y-intercept (the point of intersection with the y-axis)
\square I can find the maximum and minimum values and corresponding values of x
7.4 page 56
\square I can use graphs of the form $y=p \sin (x+r)^{\circ}$ or $y=p \cos (x+r)^{\circ}$I can find the equation from the graph

