The Chain Rule

1. Differentiate
(a) $y=(x+6)^{3}$
(b) $f(x)=(x-1)^{4}$
(c) $f(x)=\frac{1}{x+5}$
(d) $y=\frac{2}{x-4}$
(e) $y=\frac{1}{(x+1)^{3}}$
(f) $f(x)=\frac{4}{(x-2)^{4}}$
(g) $y=\frac{1}{\sqrt{x+5}}$
(h) $f(x)=\frac{2}{\sqrt{x-2}}$
(i) $y=(4 x+2)^{3}$
(j) $f(x)=(2 x-1)^{4}$
(k) $y=\frac{1}{(3 x-4)^{2}}$
(1) $y=\frac{2}{(2 x-4)^{3}}$
(m) $y=\frac{1}{\sqrt{4 x-3}}$
(n) $y=\frac{6}{\sqrt{2 x+5}}$
(o) $f(x)=\frac{4}{\sqrt[3]{6 x+5}}$
(p) $y=\frac{10}{\sqrt[5]{(3 x-2)^{2}}}$
(q) $f(x)=\left(x^{2}+3\right)^{3}$
(r) $y=2\left(x^{4}-1\right)^{3}$
2. Find the equation of the tangent to the curve $\mathrm{y}=(2 \mathrm{x}-1)^{3}$ at the point where $\mathrm{x}=1$.
3. Find the equation of the tangent to the curve $f(x)=\frac{4}{\sqrt{3 x+1}}$ at the point where $x=1$.
4. A tangent to the curve $y=\frac{1}{(2 x-5)^{3}}$ has gradient -6 . Find the point of contact.
5. A curve has equation $y=\frac{-25}{x+3}$. A tangent to this curve is parallel to the line $y=x$. Find the points of contact.
6. Find the coordinates of the stationary point of $y=(3 x-6)^{3}$ and determine its nature.
7. A curve has equation $f(x)=\left(2 x^{2}-8\right)^{2}$. Find the coordinates of the stationary points of $\mathrm{f}(\mathrm{x})$ and determine their nature.
