The Wave Function

1. Express each of the following in the form $\mathrm{k} \cos (\mathrm{x}-\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(a) $4 \cos x+3 \sin x$
(b) $\sqrt{2} \cos x+\sqrt{2} \sin x$
(c) $\cos x-\sin x$
(d) $2 \sin \mathrm{x}-3 \cos \mathrm{x}$
2. Express each of the following in the form $\mathrm{k} \cos (\mathrm{x}+\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(a) $5 \cos \mathrm{x}-12 \sin \mathrm{x}$
(b) $2 \cos x-\sqrt{5} \sin x$
(c) $3 \cos x+\sin x$
(d) $\sin x+2 \cos x$
3. Express each of the following in the form $\operatorname{ksin}(\mathrm{x}-\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(a) $2 \sin \mathrm{x}-2 \cos \mathrm{x}$
(b) $\sqrt{3} \sin x-\cos x$
(c) $4 \cos x+2 \sin x$
4. Express each of the following in the form $\operatorname{ksin}(x+a)^{\circ}$ where $k>0$ and $0 \leq \mathrm{a} \leq 360$.
(a) $6 \sin \mathrm{x}+8 \cos \mathrm{x}$
(b) $\sin x-4 \cos x$
(c) $7 \cos x-\sin x$
5.(a) Write $4 \sin \mathrm{x}+3 \cos \mathrm{x}$ in the form $\mathrm{ksin}(\mathrm{x}+\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Hence write down the maximum value of $4 \sin x+3 \cos x$ and the value of x at which this maximum occurs.
5. (a) Write $2 \cos \mathrm{x}-\sin \mathrm{x}$ in the form $\mathrm{k} \cos (\mathrm{x}+\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Write down the maximum value of $2 \cos x-\sin x$ and determine the corresponding value of x in the interval $0 \leq x \leq 360$.
6. (a) Write $\sqrt{5} \cos \mathrm{x}-2 \sin \mathrm{x}$ in the form $\mathrm{k} \cos (\mathrm{x}-\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Hence write down the minimum value of $\sqrt{5} \cos x-2 \sin x$ and the corresponding value of x in the range $0 \leq x \leq 360$.
7. (a) Write $3 \sin x+\cos x$ in the form $k \sin (x+a)^{\circ}$ where $k>0$ and $0 \leq a \leq 360$.
(b) Hence find the maximum value of $5+3 \sin x+\cos x$ and determine the corresponding value of x in the interval $0 \leq x \leq 360$.
8. (a) Write $\cos \mathrm{x}-7 \sin \mathrm{x}$ in the form $\mathrm{k} \cos (\mathrm{x}+\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Hence find the minimum value of $7 \sqrt{2}+\cos x-7 \sin x$ and the value of x at which this minimum occurs in the interval $0 \leq x \leq 360$
9. (a) Write $\sin \mathrm{x}+\sqrt{8} \cos \mathrm{x}$ in the form $\mathrm{k} \cos (\mathrm{x}-\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Hence write down the maximum value of $4+\sin x+\sqrt{8} \cos x$ and determine the value of x at which this maximum occurs in the interval $0 \leq \mathrm{x} \leq 360$.
10. (a) Express $2 \cos \mathrm{x}+3 \sin \mathrm{x}$ in the form $\mathrm{k} \cos (\mathrm{x}-\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Hence solve the equation $2 \cos \mathrm{x}+3 \sin \mathrm{x}=0.5$ for $0 \leq \mathrm{x} \leq 360$.
11. (a) Express $4 \cos \mathrm{x}+3 \sin \mathrm{x}$ in the form $\mathrm{k} \sin (\mathrm{x}+\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Hence solve the equation $4 \cos \mathrm{x}+3 \sin \mathrm{x}=3$ for $0 \leq \mathrm{x} \leq 360$.
12. $f(x)=\sqrt{2} \cos x-4 \sin x$.
(a) Express $f(x)$ in the form $k \cos (x+a)^{\circ}$ where $k>0$ and $0 \leq a \leq 360$.
(b) Solve $\mathrm{f}(\mathrm{x})=\sqrt{5}$ for $0 \leq \mathrm{x} \leq 360$.
13. $f(x)=6 \sin x-2 \cos x$.
(a) Express $\mathrm{f}(\mathrm{x})$ in the form $\mathrm{ksin}(\mathrm{x}-\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Solve $f(x)=\sqrt{20}$ for $0 \leq x \leq 360$
(c) Find the x-coordinate of the point nearest to the origin where the graph of $f(x)=6 \sin x-2 \cos x$ cuts the x-axis for $0 \leq x \leq 360$.
14. (a) Express $\sqrt{6} \cos \mathrm{x}+\sqrt{6} \sin \mathrm{x}$ in the form $\mathrm{k} \cos (\mathrm{x}+\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Solve the equation $3+\sqrt{6} \cos x+\sqrt{6} \sin x=3.8$ for $0 \leq x \leq 360$.
(c) Find the x-coordinate of the point nearest to the origin where the graph of $y=\sqrt{6} \cos x+\sqrt{6} \sin x$ cuts the x-axis for $0 \leq x \leq 360$.
15. Part of the graph of $y=2 \sin x+5 \cos x$ is shown in the diagram.
(a) Express $2 \sin x+5 \cos x$ in the form $\mathrm{k} \sin (\mathrm{x}+\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Find the coordinates of the minimum turning point P .

16. Part of the graph of $y=\sin x+4 \cos x$ is shown in the diagram.
(a) Express $\sin x+4 \cos x$ in the form $\mathrm{k} \cos (\mathrm{x}-\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Find the coordinates of the minimum turning point P.

17. Part of the graph of $y=\sin x-3 \cos x$ is shown in the diagram.
(a) Express $\sin x-3 \cos x$ in the form $\mathrm{k} \sin (\mathrm{x}-\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Find the coordinates of the maximum turning point T .

18. (a) Express $\sin \mathrm{x}-\cos \mathrm{x}$ in the form $\mathrm{k} \sin (\mathrm{x}-\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Hence sketch the graph of $y=\sin x-\cos x$ for $0 \leq x \leq 360$, showing clearly the graph's maximum and minimum values and where it cuts the x -axis and the y-axis.
19. (a) Express $\sqrt{10} \cos x-\sqrt{10} \sin x$ in the form $k \cos (x+a)^{\circ}$ where $k>0$ and $0 \leq a \leq 2 \pi$.
(b) Hence sketch the graph of $y=\sqrt{10} \cos x-\sqrt{10} \sin x$ for $0 \leq x \leq 2 \pi$, showing clearly the graph's maximum and minimum values and where it cuts the x -axis and the y -axis.
20. (a) Express $\sin \mathrm{x}-\sqrt{3} \cos \mathrm{x}$ in the form $\mathrm{k} \sin (\mathrm{x}-\mathrm{a})^{\circ}$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Hence, or otherwise, sketch the curve with equation $y=3+\sin x-\sqrt{3} \cos x$ in the interval $0 \leq x \leq 360$.
21. (a) Express $\sqrt{3} \cos x-\sin x$ in the form $k \cos (x+a)^{\circ}$ where $k>0$ and $0 \leq a \leq 2 \pi$..
(b) Hence sketch the graph of $y=\sqrt{3} \cos x-\sin x-5$ in the interval $0 \leq x \leq 2 \pi$.
