The Wave Function

- 1. Express each of the following in the form $k\cos(x a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (a) $4\cos x + 3\sin x$ (b) $\sqrt{2}\cos x + \sqrt{2}\sin x$ (c) $\cos x \sin x$
 - (d) $2\sin x 3\cos x$
- 2. Express each of the following in the form $k\cos(x + a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (a) $5\cos x 12\sin x$ (b) $2\cos x \sqrt{5}\sin x$ (c) $3\cos x + \sin x$
 - (d) $\sin x + 2\cos x$
- 3. Express each of the following in the form $k\sin(x a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (a) $2\sin x 2\cos x$ (b) $\sqrt{3}\sin x \cos x$ (c) $4\cos x + 2\sin x$
- 4. Express each of the following in the form $k\sin(x + a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (a) $6\sin x + 8\cos x$ (b) $\sin x 4\cos x$ (c) $7\cos x \sin x$
- 5.(a) Write $4\sin x + 3\cos x$ in the form $k\sin(x + a)^\circ$ where k > 0 and $0 \le a \le 360$.
 - (b) Hence write down the maximum value of $4\sin x + 3\cos x$ and the value of x at which this maximum occurs.
- 6. (a) Write $2\cos x \sin x$ in the form $k\cos(x + a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (b) Write down the maximum value of $2\cos x \sin x$ and determine the corresponding value of x in the interval $0 \le x \le 360$.
- 7. (a) Write $\sqrt{5} \cos x 2\sin x$ in the form $k\cos(x a)^\circ$ where k > 0 and $0 \le a \le 360$.
 - (b) Hence write down the minimum value of $\sqrt{5} \cos x 2\sin x$ and the corresponding value of x in the range $0 \le x \le 360$.

- 8. (a) Write $3\sin x + \cos x$ in the form $k\sin(x + a)^\circ$ where k > 0 and $0 \le a \le 360$.
 - (b) Hence find the maximum value of $5 + 3\sin x + \cos x$ and determine the corresponding value of x in the interval $0 \le x \le 360$.
- 9. (a) Write $\cos x 7\sin x$ in the form $k\cos(x + a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (b) Hence find the minimum value of $7\sqrt{2} + \cos x 7\sin x$ and the value of x at which this minimum occurs in the interval $0 \le x \le 360$
- 10. (a) Write sin x + $\sqrt{8} \cos x$ in the form $k\cos(x a)^\circ$ where k > 0 and $0 \le a \le 360$.
 - (b) Hence write down the maximum value of $4 + \sin x + \sqrt{8} \cos x$ and determine the value of x at which this maximum occurs in the interval $0 \le x \le 360$.
- 11. (a) Express $2\cos x + 3\sin x$ in the form $k\cos(x a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (b) Hence solve the equation $2\cos x + 3\sin x = 0.5$ for $0 \le x \le 360$.
- 12. (a) Express $4\cos x + 3\sin x$ in the form $k\sin(x + a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (b) Hence solve the equation $4\cos x + 3\sin x = 3$ for $0 \le x \le 360$.
- 13. $f(x) = \sqrt{2} \cos x 4\sin x$.
 - (a) Express f(x) in the form $k\cos(x + a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (b) Solve $f(x) = \sqrt{5}$ for $0 \le x \le 360$.
- 14. $f(x) = 6\sin x 2\cos x$.
 - (a) Express f(x) in the form $k\sin(x a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (b) Solve $f(x) = \sqrt{20}$ for $0 \le x \le 360$
 - (c) Find the x-coordinate of the point nearest to the origin where the graph of $f(x) = 6\sin x 2\cos x$ cuts the x-axis for $0 \le x \le 360$.

- 15. (a) Express $\sqrt{6} \cos x + \sqrt{6} \sin x$ in the form $k\cos(x + a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (b) Solve the equation $3 + \sqrt{6} \cos x + \sqrt{6} \sin x = 3.8$ for $0 \le x \le 360$.
 - (c) Find the x-coordinate of the point nearest to the origin where the graph of $y = \sqrt{6} \cos x + \sqrt{6} \sin x$ cuts the x-axis for $0 \le x \le 360$.
- 16. Part of the graph of $y = 2\sin x + 5\cos x$ is shown in the diagram.
 - (a) Express $2\sin x + 5\cos x$ in the form $k\sin(x + a)^\circ$ where k > 0 and $0 \le a \le 360$.
 - (b) Find the coordinates of the minimum turning point P.

- 17. Part of the graph of $y = \sin x + 4\cos x$ is shown in the diagram.
 - (a) Express sin $x + 4\cos x$ in the form $k\cos(x a)^{\circ}$ where k > 0 and $0 \le a \le 360$.
 - (b) Find the coordinates of the minimum turning point P.
- 18. Part of the graph of $y = \sin x 3\cos x$ is shown in the diagram.
 - (a) Express sin $x 3\cos x$ in the form $k\sin(x a)^\circ$ where k > 0 and $0 \le a \le 360$.
 - (b) Find the coordinates of the maximum turning point T.

- 19. (a) Express sin x cos x in the form ksin(x a)° where k > 0 and $0 \le a \le 360$.
 - (b) Hence sketch the graph of $y = \sin x \cos x$ for $0 \le x \le 360$, showing clearly the graph's maximum and minimum values and where it cuts the x-axis and the y-axis.
- 20. (a) Express $\sqrt{10} \cos x \sqrt{10} \sin x$ in the form $k\cos(x + a)^{\circ}$ where k > 0 and $0 \le a \le 2\pi$.
 - (b) Hence sketch the graph of $y = \sqrt{10} \cos x \sqrt{10} \sin x$ for $0 \le x \le 2\pi$, showing clearly the graph's maximum and minimum values and where it cuts the x-axis and the y-axis.
- 21. (a) Express sin x $\sqrt{3} \cos x$ in the form ksin(x a)° where k > 0 and 0 ≤ a ≤ 360.
 - (b) Hence, or otherwise, sketch the curve with equation $y = 3 + \sin x \sqrt{3} \cos x$ in the interval $0 \le x \le 360$.
- 22. (a) Express $\sqrt{3} \cos x \sin x$ in the form $k\cos(x + a)^{\circ}$ where k > 0 and $0 \le a \le 2\pi$...
 - (b) Hence sketch the graph of $y = \sqrt{3} \cos x \sin x 5$ in the interval $0 \le x \le 2\pi$.