Trigonometry – Revision

1.
$$\tan x = 4\sin\frac{\pi}{3}\cos^2\frac{\pi}{4}$$
. Find the exact value of x.

2. In triangle PQR show that $\cos 2x = \frac{4}{5}$.

3. In triangle ABC, show that the exact value of sin(a + b) is $\frac{2}{\sqrt{5}}$.

4. For the diagram opposite, show that $\cos(a + b)$ is $\frac{2\sqrt{5} - 2}{3\sqrt{5}}$.

- 5. Given $\tan x = \frac{1}{7}$, show that $\sin 2x$ is $\frac{7}{25}$.
- 6. (a) Solve the equation $2\sin^2 x 1 = 0$, $0 \le x \le 360$
 - (b) Solve the equation $3\tan^2 x = 1$, $0 \le x \le 2\pi$
- 7. Solve, for $0 \le x \le 360$
 - (a) $2\cos 2x + 1 = 0$ (b) $4(\tan 2x 1) = 4$
 - (c) $3\cos(x-40) = 1$ (d) $\sqrt{2}\sin(2x-10) = 1$

8. Solve, for $0 \le x \le \pi$

(a)
$$2\sin 2x - \sqrt{3} = 0$$
 (b) $\sqrt{3}\tan\left(2x - \frac{\pi}{3}\right) + 1 = 0$

10. Solve, for $0 \le x \le 360$

- (a) $2\sin 2x + \cos x = 0$ (b) $\cos 2x = 3\sin x + 1$ (c) $\cos 2x = \cos x$
- (d) $\cos 2x 2\sin^2 x = 0$ (e) $5\cos 2x \cos x + 2 = 0$
- 11. (a) Show that $3\cos 2x 4\cos^2 x = -1 2\sin^2 x$ (b) Hence solve $3\cos 2x - 4\cos^2 x = 3\sin x$, $0 \le x \le 360$
- 12. (a) The diagram opposite shows the graph of $y = a\cos bx + c$. Write down the values of a, b and c.
 - (b) Find the coordinates of P and Q, the points of intersection of the graph in (a) with the line y = -1.

- 13. (a) The graph opposite has equation y = asin bx + c. Write down the values of a, b and c.
 - (b) Find the x-coordinates of P and Q.

(b) Find the points of intersection of f(x) and g(x).

(a) State the values of a, b and c.

14. The diagram shows the graphs of

 $f(x) = a \sin bx$ and $g(x) = c \sin x$.

- 15. Express $\cos x \sin x$ in the form $k\cos(x \alpha)$, where k > 0 and $0 \le \alpha \le 360$.
- 16. Express $3\sin x 4\cos x$ in the form $k\sin(x + a)$, where k > 0 and $0 \le a \le 360$.
- 17. (a) Express $2\cos x + 3\sin x$ in the form $k\cos(x a)$, where k > 0 and $0 \le a \le 360$.
 - (b) Hence solve $2\cos x + 3\sin x = 2$, $0 \le x \le 360$.
- 18. Solve $4\sin x + 3\cos x = 2.5$, $0 \le x \le 180$.
- 19. (a) Express $2\cos x + 2\sin x$ in the form $k\cos(x \alpha)$, where k > 0 and $0 \le \alpha \le 360$.
 - (b) Write down the maximum value of $2\cos x + 2\sin x$ and the value of x for which it occurs.

- 20. (a) Express $\sqrt{5} \sin x 2\cos x$ in the form $k\sin(x + a)$, where k > 0 and $0 \le a \le 360$.
 - (b) Write down the minimum value of $\sqrt{5} \sin x 2\cos x$ and the value of x for which it occurs.
 - 21. (a) The diagram shows the graph of $f(x) = a\cos bx + c$. Write down the values of a,b and c.

(b) The diagram shows the graph of g(x) = psin qx + r. Write down the values of p, q and r.

- (c) Express f(x) + g(x) in the form kcos(2x - a).
- (d) Hence solve $f(x) + g(x) = \sqrt{15}$, $0 \le x \le 360$.

22. Sketch the following graphs

(a) $y = 2\sin x - 1$	$0 \le x \le 360$
(b) $y = 3\cos 2x + 2$	$0 \le x \le 180$
(c) $y = 4\sin(x - 40)$	$0 \le x \le 2\pi$

- $0 \le x \le 2\pi$ (d) $y = 2\cos(2x + 10) - 1$ $0 \le x \le \pi$