Trigonometry - Revision

1. $\tan x=4 \sin \frac{\pi}{3} \cos ^{2} \frac{\pi}{4}$. Find the exact value of x.
2. In triangle $P Q R$ show that $\cos 2 x=\frac{4}{5}$.

3. In triangle $A B C$, show that the exact value of $\sin (a+b)$ is $\frac{2}{\sqrt{5}}$.

4. For the diagram opposite, show that $\cos (a+b)$ is $\frac{2 \sqrt{5}-2}{3 \sqrt{5}}$.

5. Given $\tan x=\frac{1}{7}$, show that $\sin 2 x$ is $\frac{7}{25}$.
6. (a) Solve the equation $2 \sin ^{2} x-1=0,0 \leq x \leq 360$
(b) Solve the equation $3 \tan ^{2} x=1,0 \leq x \leq 2 \pi$
7. Solve, for $0 \leq x \leq 360$
(a) $2 \cos 2 x+1=0$
(b) $4(\tan 2 x-1)=4$
(c) $3 \cos (\mathrm{x}-40)=1$
(d) $\sqrt{2} \sin (2 x-10)=1$
8. Solve, for $0 \leq x \leq \pi$
(a) $2 \sin 2 \mathrm{x}-\sqrt{3}=0$
(b) $\sqrt{3} \tan \left(2 \mathrm{x}-\frac{\pi}{3}\right)+1=0$
9. The diagram shows a sketch of the graph $y=\sin \left(2 x-\frac{\pi}{6}\right)$ and the straight line $y=0.5$. Find the coordinates of P and Q .

10. Solve, for $0 \leq x \leq 360$
(a) $2 \sin 2 x+\cos x=0$
(b) $\cos 2 x=3 \sin x+1$
(c) $\cos 2 x=\cos x$
(d) $\cos 2 x-2 \sin ^{2} x=0$
(e) $5 \cos 2 x-\cos x+2=0$
11. (a) Show that $3 \cos 2 x-4 \cos ^{2} x=-1-2 \sin ^{2} x$
(b) Hence solve $3 \cos 2 x-4 \cos ^{2} x=3 \sin x, 0 \leq x \leq 360$
12. (a) The diagram opposite shows the graph of $y=a \cos b x+c$. Write down the values of a, b and c .
(b) Find the coordinates of P and Q , the points of intersection of the graph in (a) with the line $\mathrm{y}=-1$.

13. (a) The graph opposite has equation $y=\operatorname{asin} b x+c$. Write down the values of a, b and c .
(b) Find the x -coordinates of P and Q .

14. The diagram shows the graphs of $f(x)=a \sin b x$ and $g(x)=c \sin x$.
(a) State the values of a, b and c.
(b) Find the points of intersection of $f(x)$ and $g(x)$.

15. Express $\cos \mathrm{x}-\sin \mathrm{x}$ in the form $\mathrm{k} \cos (\mathrm{x}-\alpha)$, where $\mathrm{k}>0$ and $0 \leq \alpha \leq 360$.
16. Express $3 \sin \mathrm{x}-4 \cos \mathrm{x}$ in the form $\mathrm{k} \sin (\mathrm{x}+\mathrm{a})$, where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
17. (a) Express $2 \cos \mathrm{x}+3 \sin \mathrm{x}$ in the form $\mathrm{k} \cos (\mathrm{x}-\mathrm{a})$, where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Hence solve $2 \cos x+3 \sin x=2,0 \leq x \leq 360$.
18. Solve $4 \sin x+3 \cos x=2.5,0 \leq x \leq 180$.
19. (a) Express $2 \cos \mathrm{x}+2 \sin \mathrm{x}$ in the form $\mathrm{k} \cos (\mathrm{x}-\alpha)$, where $\mathrm{k}>0$ and $0 \leq \alpha \leq 360$.
(b) Write down the maximum value of $2 \cos \mathrm{x}+2 \sin \mathrm{x}$ and the value of x for which it occurs.
20. (a) Express $\sqrt{5} \sin \mathrm{x}-2 \cos \mathrm{x}$ in the form $\mathrm{k} \sin (\mathrm{x}+\mathrm{a})$, where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$.
(b) Write down the minimum value of $\sqrt{5} \sin x-2 \cos x$ and the value of x for which it occurs.
21. (a) The diagram shows the graph of $f(x)=a \cos b x+c$. Write down the values of a, b and c .

(b) The diagram shows the graph of $\mathrm{g}(\mathrm{x})=\mathrm{p} \sin \mathrm{qx}+\mathrm{r}$. Write down the values of p, q and r .

(c) Express $f(x)+g(x)$ in the form $\operatorname{kcos}(2 x-a)$.
(d) Hence solve $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})=\sqrt{15}, 0 \leq \mathrm{x} \leq 360$.
22. Sketch the following graphs
(a) $y=2 \sin x-1 \quad 0 \leq x \leq 360$
(b) $y=3 \cos 2 x+2 \quad 0 \leq x \leq 180$
(c) $y=4 \sin (x-40) \quad 0 \leq x \leq 2 \pi$
(d) $y=2 \cos (2 x+10)-1 \quad 0 \leq x \leq \pi$
