Vectors

1. $\mathbf{a}=\left(\begin{array}{r}3 \\ -1 \\ 2\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{r}-4 \\ 0 \\ 2\end{array}\right)$.

Calculate (a) $|\mathbf{b}| \quad$ (b) $|2 \mathbf{a}-\mathbf{b}| \quad$ (c) $|3(\mathbf{a}+\mathbf{b})|$
2. (a) Find the magnitude of the vector $\left(\begin{array}{c}\frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3}\end{array}\right)$.
(b) Find a vector parallel to the vector $\left(\begin{array}{r}-4 \\ 3 \\ 0\end{array}\right)$ which has unit length.
3. A is $(0,-3,5)$, B is $(7,-6,9)$ and C is $(21,-12,17)$. Show that A, B and C are collinear stating the ratio $\mathrm{AB}: \mathrm{BC}$.
4. PQRS is a parallelogram with $\mathrm{P}(3,4,0), \mathrm{Q}(7,6,-3)$ and $R(8,5,2)$. Find the coordinates of S.
5. (a) P is the point $(-1,8,0)$ and Q is $(4,-2,5)$. B divides PQ in the ratio 3:2. Find the coordinates of B.
(b) A is $(0,1,5)$ and C is $(8,5,-3)$. Show that A, B and C are collinear.
6. An aeroplane flies in a straight line at a constant speed. It takes 3 hours to fly from A to B and 4 hours to fly from B to C.
Relative to coordinate axes, A is $(0,-1,6)$ and C is $(7,6,-1)$. Find the coordinates of B.

7. $\mathbf{u}=2 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}$ and $\mathbf{v}=\mathbf{i}+a \mathbf{j}+\sqrt{7} \mathbf{k}$. If $|\mathbf{u}|=|\mathbf{v}|$ find the value of a.
8. Show that the vectors $\mathbf{a}=2 \mathbf{i}-4 \mathbf{j}+6 \mathbf{k}$ and $\mathbf{b}=4 \mathbf{i}-7 \mathbf{j}-6 \mathbf{k}$ are perpendicular.
9. A triangle has vertices $\mathrm{A}(6,-1,9), \mathrm{B}(3,-2,11)$ and $\mathrm{C}(7,-8,14)$. Show that this triangle is right-angled at B .
10. Three points A, B and D have coordinates as shown.

(a) Find the coordinates of C if AB is parallel and equal in length to CD .
(b) The point E divides AB in the ratio 2:1, find the coordinates of E .
(c) Prove that CE is perpendicular to AB .
11. Use the diagrams to find the value of a.b.
(a)

(b)

$$
|\mathbf{a}|=6 \quad|\mathbf{b}|=7
$$

$$
|\mathbf{a}|=4 \quad|\mathbf{b}|=2 \sqrt{3}
$$

12. Write down the value of p.q.

$$
|\mathbf{p}|=8 \quad|\mathbf{q}|=9
$$

13. A triangle is formed from $R(0,4,-1), S(1,5,2)$ and $T(6,1,-2)$.
(a) Find the vectors $\overrightarrow{\mathrm{RS}}$ and $\overrightarrow{\mathrm{RT}}$.
(b) Evaluate $\overrightarrow{\mathrm{RS}} \cdot \overrightarrow{\mathrm{RT}}$
(c) What can you deduce about he lines RS and RT.
14. A, B, C and D are the points $(-1,3,1),(1,6,7),(0,2,5)$ and $(1,4,10)$ respectively.
(a) Find the components of $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{CD}}$.
(b) The vector $\left(\begin{array}{l}\mathrm{p} \\ \mathrm{q} \\ 1\end{array}\right)$ is perpendicular to both $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{CD}}$. Find p and q .
15. $\mathbf{u}=\left(\begin{array}{r}-3 \\ 3 \\ \mathrm{k}\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{r}1 \\ 5 \\ -1\end{array}\right)$.
(a) Write down the vectors $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$.
(b) Given that $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ are perpendicular find k.
16. In the square based pyramid opposite all eight edges are of length 5 units.

Evaluate $\mathbf{p} \cdot(\mathbf{q}+\mathbf{r})$.

17. Shown opposite is a right-angled isosceles triangle. The two equal sides of the triangle have length 4 units.

Find the value of $\mathbf{k} .(\mathbf{h}+\mathbf{k}+\mathbf{I})$.

18. In the diagram opposite TOPQR is a pyramid whose base OPQR is a rhombus of length 1 unit. OPT and ORT are equilateral triangles.
(a) Evaluate t.r.
(b) Given X is the midpoint of PQ , evaluate $\mathbf{t} . \mathrm{x}$.

19. The diagram shows two vectors \mathbf{a} and \mathbf{b} with $|\mid=2$ and $| \mathbf{b} \mid=3 \sqrt{3}$.
(a) Evaluate (a) a.a
(b) b.b
(c) a.b
(b) Given $\mathbf{p}=2 \mathbf{a}+3 \mathbf{b}$ evaluate $\mathbf{p . p}$.

20. In the trapezium $\mathrm{AB}=2 \mathrm{DC}$ and AB is paralle to DC .

In terms of \mathbf{u} and \mathbf{v}, write down the vectors
(a) $\overrightarrow{\mathrm{AB}}$
(b) $\overrightarrow{\mathrm{AC}}$
(c) $\overrightarrow{\mathrm{BC}}$
(d) $\overrightarrow{\mathrm{AN}}$

21. ABCDEFGH is a parallelipiped.

In terms of \mathbf{u}, \mathbf{v} and \mathbf{w} find expressions for
(a) $\overrightarrow{\mathrm{DC}}$
(b) $\overrightarrow{\mathrm{HC}}$
(c) $\overrightarrow{\mathrm{AC}}$
(d) $\overrightarrow{\mathrm{FD}}$

22. (a) For the diagram opposite find $\overrightarrow{\mathrm{AS}}$ and $\overrightarrow{\mathrm{AT}}$.
(b) Hence calculate angle TAS.

23. Calculate the size of angle FEG in the diagram shown.

24. $\overrightarrow{\mathrm{PA}}$ and $\overrightarrow{\mathrm{PB}}$ are representatives of the vectors \mathbf{a} and \mathbf{b}.

$$
\mathbf{a}=\left(\begin{array}{r}
4 \\
-4 \\
2
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{r}
-2 \\
2 \\
1
\end{array}\right) \text { and angle } \mathrm{APB}=2 \theta .
$$

(a) Prove that $\cos 2 \theta=-\frac{7}{9}$

(b) Hence find the exact value of $\cos ^{2} \theta$.
25. In the diagram $\mathrm{AB}=15, \mathrm{BC}=6$ and $\mathrm{CF}=8$
(a) Write down the coordinates of D and F
(b) Calculate the size of angle DBF.

26. The diagram shows three cuboids placed on top of each other.
Two of the cuboids are equal in size 10 cm by 3 cm by 5 cm .
The third cuboid is centrally placed on the other two and has dimensions 6 cm by 3 cm by 5 cm .
(a) Write down the coordinates of A, B and C .
(b) Calculate the size of angle BAC.

