1 Show that the line joining $\mathrm{D}(2,2,3)$ and $\mathrm{E}(4,3,2)$ is parallel to the line joining $\mathrm{F}(5,3,-2)$ and $G(9,5,-4)$.

2 Show that $\mathrm{A}(2,5,0), \mathrm{B}(5,8,3)$ and $\mathrm{C}(4,7,2)$ are collinear and find the ratio $\mathrm{AB}: \mathrm{BC}$.

3 P divides the line joining $S(1,0,2)$ and $T(5,4,10)$ in the ratio 1:3. Find the coordinates of P.

4 Use the scalar product to prove that the triangle with vertices $\mathrm{P}(1,0,0), \mathrm{Q}(1,1,1)$ and $\mathrm{R}(0,1,1)$ is right-angled.

5 A go-kart driver is being affected by two forces modelled by the vectors:

$$
\boldsymbol{u}=\left(\begin{array}{c}
8 \\
7 \\
-3
\end{array}\right) \text { and } \boldsymbol{v}=\left(\begin{array}{c}
9 \\
-4 \\
5
\end{array}\right)
$$

(a) Calculate the resultant force.
(b) Calculate the magnitude of the resultant force.
(c) Calculate the acute angle between the two forces.
$\overrightarrow{A B}$ represents vector \boldsymbol{v} and $\overrightarrow{B C}$ represents vector \boldsymbol{w}. $A C: C D=1: 3$.
Find vector $\overrightarrow{B D}$ in terms of \boldsymbol{v} and \boldsymbol{w}.

7 The sides of this equilateral triangle are 2 units long and represent the vectors $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} as shown in the diagram.
Evaluate $\boldsymbol{a} \cdot(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})$.

