1 Prove that $\sqrt{3} \cos x+\sin x=2 \cos \left(x-\frac{\pi}{6}\right)$.

2 Express $8 \cos x^{\circ}+15 \sin x^{\circ}$ as a single trigonometric function.

3 Solve $\sin x+\cos x=1$, for $0 \leq x<2 \pi$.

4 The voltage, V volts, necessary to produce a certain alternating current at time $t(t>0)$ can be expressed in the form

$$
V=2 \sin 300 t^{\circ}+3 \cos 300 t^{\circ}
$$

(a) Express V in the form $k \sin (300 t+\alpha)^{\circ}$ where $0 \leq \alpha \leq 180^{\circ}$.
(b) (i) Find the maximum value of V.
(ii) Find the first time that the voltage reaches 2 volts.

5 The frequency, f hertz, of the sound of a car alarm t seconds after it starts is given by:

$$
f=2500-200 \sin 120 t^{\circ}+200 \sqrt{3} \cos 120 t^{\circ}
$$

(a) Express f in the form $f=2500+k \sin (120 t+\alpha)^{\circ}$, where $k>0$ and $0 \leq \alpha \leq 180^{\circ}$.
(b) Hence sketch the graph of f for $0 \leq t \leq 6$.
(c) If the frequency rises above 2800 hertz, the alarm may cause noise pollution.

Between which times is the alarm sounding above this frequency?

