Differential Equations

- 1. $f'(x) = 6x^2 4x$. Given f(2) = 10 find a formula for f(x).
- 2. $f'(x) = 10x 2x^3$. Given f(2) = 0 find a formula for f(x).
- 3. $\frac{dy}{dx} = 3 + 6x x^2$. When x = 3, y = 10. Find a formula for y.
- 4. $\frac{dy}{dx} = 6x \frac{5}{x^2}$. Find a formula for the curve y given it passes through the point (1,6).
- 5. $\frac{dy}{dx} = 3\sqrt{x} 6x$. Find a formula for y given the curve passes through (4,-30).
- 6. The gradient of the tangent to a curve is given by $f'(x) = 6x^2 4$. If the curve passes through the point (2,7), find its equation.
- 7. The gradient of the tangent to a curve is given by $\frac{dy}{dx} = \frac{2}{\sqrt{x}} + 1$. If the curve passes through the point (9,10), find its equation.
- 8. $f'(x) = 3x^2 4x + 6$ and f(2) = 17. Find a formula for f(x).
- 9. $f'(x) = \frac{2x^3 x^2}{x}$ and f(6) = 100. Find a formula for f(x).
- 10. $f'(x) = 4x(x^2 1)$ and f(-1) = 2. Find a formula for f(x).
- 11. The graph of y = g(x) passes through the point (3,-1). If $\frac{dy}{dx} = 3x^2 - \frac{1}{x^2}$, express y in terms of x.

х