## Functions/Graphs Past Papers Unit 1 Outcome 2

## Written Questions

1. $f(x)=3-x$ and $g(x)=\frac{3}{x}, x \neq 0$.
(a) Find $p(x)$ where $p(x)=f(g(x))$.
(b) If $q(x)=\frac{3}{3-x}, x \neq 3$, find $p(q(x))$ in its simplest form.
2. The diagram illustrates three functions $f, f$ and $h$. The functions are defined by $f(x)=2 x+5$ and $g(x)=x^{2}-3$.

The function $h$ is such that whenever $f(p)=q$ and $g(q)=r$ then $h(p)=r$.
(a) If $q=7$, find the values of $p$ and $r$.
(b) Find a formula for $h(x)$, in terms of $x$.

3. On a suitable set of real numbers, functions $f$ and $g$ are defined by $f(x)=\frac{1}{x+2}$ and $g(x)=\frac{1}{x}-2$.
Find $f(g(x))$ in its simplest form.
4. $f(x)=2 x-1, g(x)=3-2 x$ and $h(x)=\frac{1}{4}(5-x)$.
(a) Find a formula for $k(x)$ where $k(x)=f(g(x))$.
(b) Find a formula for $h(k(x))$.
(c) What is the connection between the functions $h$ and $k$ ?
5. A function $f$ is defined on the set of real numbers by $f(x)=\frac{x}{1-x}, x \neq 1$. Find, in its simplest form, an expression for $f(f(x))$.
[SQA]
6. The functions $f$ and $g$, defined on suitable domains, are given by $f(x)=\frac{1}{x^{2}-4}$ and $g(x)=2 x+1$.
(a) Find an expression for $h(x)$ where $h(x)=g(f(x))$. Give your answer as a single fraction.
(b) State a suitable domain for $h$.
7. Functions $f$ and $g$, defined on suitable domains, are given by $f(x)=2 x$ and $g(x)=\sin x+\cos x$.
Find $f(g(x))$ and $g(f(x))$.
8. Functions $f$ and $g$ are defined by $f(x)=2 x+3$ and $g(x)=\frac{x^{2}+25}{x^{2}-25}$ where $x \in \mathbb{R}$, $x \neq \pm 5$.
The function $h$ is given by the formula $h(x)=g(f(x))$.
For which real values of $x$ is the function $h$ undefined?
9. The functions $f$ and $g$ are defined on a suitable domain by $f(x)=x^{2}-1$ and $g(x)=x^{2}+2$.
(a) Find an expression for $f(g(x))$.
(b) Factorise $f(g(x))$.
[SQA]
10. (a) $f(x)=2 x+1, g(x)=x^{2}+k$, where $k$ is a constant.
(i) Find $g(f(x))$.
(ii) Find $f(g(x))$.
(b) (i) Show that the equation $g(f(x))-f(g(x))=0$ simplifies to

$$
\begin{equation*}
2 x^{2}+4 x-k=0 \tag{2}
\end{equation*}
$$

(ii) Determine the nature of the roots of this equation when $k=6$.
(iii) Find the value of $k$ for which $2 x^{2}+4 x-k=0$ has equal roots.
[SQA]
11. Functions $f$ and $g$ are defined on the set of real numbers by $f(x)=x-1$ and $g(x)=x^{2}$.
(a) Find formulae for
(i) $f(g(x))$
(ii) $g(f(x))$.
(b) The function $h$ is defined by $h(x)=f(g(x))+g(f(x))$.

Show that $h(x)=2 x^{2}-2 x$ and sketch the graph of $h$.
(c) Find the area enclosed between this graph and the $x$-axis.
12. Functions $f(x)=\sin x, g(x)=\cos x$ and $h(x)=x+\frac{\pi}{4}$ are defined on a suitable set of real numbers.
(a) Find expressions for:
(i) $f(h(x))$;
(ii) $g(h(x))$.
(b) (i) Show that $f(h(x))=\frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x$.
(ii) Find a similar expression for $g(h(x))$ and hence solve the equation $f(h(x))-g(h(x))=1$ for $0 \leq x \leq 2 \pi$.
[SQA] 13. Functions $f$ and $g$ are defined on suitable domains by $f(x)=\sin \left(x^{\circ}\right)$ and $g(x)=2 x$.
(a) Find expressions for:
(i) $f(g(x))$;
(ii) $g(f(x))$.
(b) Solve $2 f(g(x))=g(f(x))$ for $0 \leq x \leq 360$.
14. Part of the graph of $y=f(x)$ is shown in the diagram. On separate diagrams sketch the graphs of
(a) $y=f(x+1)$
(b) $\quad y=-2 f(x)$.

Indicate on each graph the images of O, A, B, C and D.

15. The diagram shows the graph of $y=f(x)$.

Sketch the graph of $y=2-f(x)$.

16. Part of the graph of $y=f(x)$ is shown in the diagram. On separate diagrams sketch the graphs of
(i) $y=f(x-1)$
(ii) $y=-f(x)-2$
indicating on each graph the images of $A, B, C$ and $D$.


