Higher Mathematics

 y^{x} Quest

Functions/Graphs Past Papers Unit 1 Outcome 2

Written Questions

[SQA] 1.
$$f(x) = 3 - x$$
 and $g(x) = \frac{3}{x}, x \neq 0$.
(a) Find $p(x)$ where $p(x) = f(g(x))$.
(b) If $q(x) = \frac{3}{3-x}, x \neq 3$, find $p(q(x))$ in its simplest form.
3

[SQA] 2. The diagram illustrates three functions f, g and h. The functions are defined by f(x) = 2x + 5 and $g(x) = x^2 - 3$.

The function *h* is such that whenever frag replacements f(p) = q and g(q) = r then h(p) = r.

> O(a) If q = 7, find the values of p and r. x (b) Find a formula for h(x), in terms of x. y

3

3

[SQA] 3. On a suitable set of real numbers, functions f and g are defined by $f(x) = \frac{1}{x+2}$ and $g(x) = \frac{1}{x} - 2$. Find f(g(x)) in its simplest form.

[SQA] 4.
$$f(x) = 2x - 1$$
, $g(x) = 3 - 2x$ and $h(x) = \frac{1}{4}(5 - x)$.
(a) Find a formula for $k(x)$ where $k(x) = f(g(x))$.
(b) Find a formula for $h(k(x))$.
(c) What is the connection between the functions h and k ?
1

[SQA] 5. A function f is defined on the set of real numbers by $f(x) = \frac{x}{1-x}$, $x \neq 1$. Find, in its simplest form, an expression for f(f(x)).

replacements

O *x y* **bsn**.uk.net Higher Mathematics

[SQA] 6. The functions *f* and *g*, defined on suitable domains, are given by $f(x) = \frac{1}{x^2 - 4}$ and g(x) = 2x + 1.

- (*a*) Find an expression for h(x) where h(x) = g(f(x)). Give your answer as a single fraction.
- (*b*) State a suitable domain for *h*.

[SQA] 7. Functions f and g, defined on suitable domains, are given by f(x) = 2x and $g(x) = \sin x + \cos x$. Find f(g(x)) and g(f(x)).

[SQA] 8. Functions f and g are defined by f(x) = 2x + 3 and $g(x) = \frac{x^2 + 25}{x^2 - 25}$ where $x \in \mathbb{R}$, $x \neq \pm 5$. The function h is given by the formula h(x) = g(f(x)). For which real values of x is the function h **undefined**?

[SQA] 9. The functions f and g are defined on a suitable domain by $f(x) = x^2 - 1$ and $g(x) = x^2 + 2$.

- (*a*) Find an expression for f(g(x)). 2
- (b) Factorise f(g(x)).

[SQA] 10.	(a)	f(x) = 2	$dx + 1$, $g(x) = x^2 + k$, where k is a constant.	
			Find $g(f(x))$. Find $f(g(x))$.	(2) (2)
frag replacements O x y	(b)	2 (ii) I	Show that the equation $g(f(x)) - f(g(x)) = 0$ simplifies to $2x^2 + 4x - k = 0$. Determine the nature of the roots of this equation when $k = 6$. Find the value of k for which $2x^2 + 4x - k = 0$ has equal roots.	(2) (2) (3)

replacements

 \cap

$$y = \frac{x}{y}$$

 O_{y}^{x} Quest

PStrag replacements

4

4

2

3

1

 y^{x} Quest

Ο

[SQA] 11. Functions f and g are defined on the set of real numbers by f(x) = x - 1 and $g(x) = x^2$.

- (a) Find formulae for
 - (i) f(g(x))
 - (ii) g(f(x)).

(*b*) The function *h* is defined by h(x) = f(g(x)) + g(f(x)). Show that $h(x) = 2x^2 - 2x$ and sketch the graph of *h*. 3

- (c) Find the area enclosed between this graph and the *x*-axis.
- [SQA] 12. Functions $f(x) = \sin x$, $g(x) = \cos x$ and $h(x) = x + \frac{\pi}{4}$ are defined on a suitable set of real numbers.
 - (*a*) Find expressions for:
 - (i) f(h(x));
 - (ii) g(h(x)).
 - (*b*) (i) Show that $f(h(x)) = \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x$.
 - (ii) Find a similar expression for g(h(x)) and hence solve the equation f(h(x)) g(h(x)) = 1 for $0 \le x \le 2\pi$.

[SQA] 13. Functions f and g are defined on suitable domains by $f(x) = \sin(x^{\circ})$ and g(x) = 2x.

- (*a*) Find expressions for:
 - (i) f(g(x));
 - (ii) g(f(x)).

N.uk.net

(b) Solve
$$2f(g(x)) = g(f(x))$$
 for $0 \le x \le 360$.

[SQA] 14. Part of the graph of y = f(x) is shown in the diagram. On separate diagrams sketch the graphs of
(a) y = f(x+1)
(b) y = -2f(x). Indicate on each graph the images of O, A, B, C and D.

frag replacements

 $\frac{\begin{array}{c} \text{replacements} & x \\ 0 & y \\ x & y \end{array}}{\begin{array}{c} x \\ y \\ x \\ y \end{array}}$

Questions marked '[SQA]' ⓒ SQA All others ⓒ Higher Still Notes

5

2

4

4

1

frag replacements

[SQA]

Oxy

frag replacements

- Ox
- y

[END OF WRITTEN QUESTIONS]

replacements

-1

5