Maxima and Minima

1. A solid cuboid measures x units by x units by h units. The volume of this cuboid is 125 units 3.
(a) Show that $\mathrm{h}=\frac{125}{\mathrm{x}^{2}}$
(b) Show that the surface area of this cuboid is given by $A(x)=2 x^{2}+\frac{500}{x}$.

(c) Find the value of x such that the surface area is minimised.
2. An open cuboid (i.e no top) has measurements x units by x units by h units. Its volume is 288 units 3.
(a) Show that the surface area of this cuboid is $A(x)=2 x^{2}+\frac{864}{x}$.
(b) Find the dimensions of this cuboid if the surface area is to be minimised.

3. An open trough is in the shape of a triangular prism, as shown. The trough has a capacity of $256000 \mathrm{~cm}^{3}$.
(a) Show that the surface area of the trough is $A(x)=x^{2}+\frac{1024000}{x}$
(b) Find the value of x such that this surface area is as small as possible.

4. The diagram shows a solid cuboid. The surface area of this cuboid is $600 \mathrm{~cm}^{2}$.
(a) Show that $\mathrm{d}=\frac{100}{\mathrm{x}}-\frac{2 \mathrm{x}}{3}$
(b) Show that the volume of the cuboid is given by
$V=200 x-\frac{4}{3} x^{3}$.
(c) Find the value of x which maximises this volume.

$2 x$
5. An open trough, as shown, has surface area $4 \mathrm{~m}^{2}$.
(a) Show that $\mathrm{h}=\frac{2}{\mathrm{x}}-\frac{\mathrm{x}}{2}$.
(b) Show that the volume of the trough is

$$
\mathrm{V}=\mathrm{x}-\frac{\mathrm{x}^{3}}{4}
$$

(c) Show that for a maximum volume $x=\frac{2}{\sqrt{3}}$.

6. An open open cuboid is shown opposite.

The surface area of this cuboid is 12 units 2.
(a) Show that the volume, V units 3, of the cuboid is given by $V(x)=\frac{2}{3} x\left(6-x^{2}\right)$
(b) Find the exact value of x which gives a maximum volume.

7. A wind shelter, as shown, has a back, top and two square sides.
The total amount of canvas used to make the shelter is $96 \mathrm{~m}^{2}$.
(a) Show that the volume of the shelter is

$$
V=x\left(48-x^{2}\right)
$$

(b) Find the dimensions of the shelter of
 maximum volume, justifying your answer.
8. A flag consists of red triangle on a yellow rectangular background. In the yellow rectangle ABCD , $\mathrm{AB}=12$ and $\mathrm{AD}=8 . \mathrm{EB}=\mathrm{CF}=\mathrm{x}$.
(a) Show that the area H, of the red triangle is Given by $H(x)=48-6 x+\frac{1}{2} x^{2}$
(b) Find the biggest possible area of the triangle.

9. A rectangular garden is laid out as shown in the diagram with a rectangular lawn of area 50 square metres surrounded by a border. The lawn has breadth x metres.

(a) If the total area of the garden is A square metres, show that $A=58+4 x+\frac{100}{x}$.
(b) Find the value of x which minimises the area of the garden.
10. When a ship is travelling at a speed of v kilometres per hour it uses fuel at a rate of $\left(1+0.0005 \mathrm{v}^{3}\right)$ tonnes per hour.
(a) Prove that the total amount of fuel used on a voyage of 5000 km at a speed of v kilometres per hour is $\mathrm{A}=\frac{5000}{\mathrm{v}}+2.5 \mathrm{v}^{2}$ tonnes.
(b) Find the speed which minimises the amount of fuel used and the amount of fuel used at this speed.
11. A square piece of card of side 50 cm has a square of side x cm cut from each corner. An open box is formed by turning up the sides.
(a) Show that the volume, V , of the open box is given by $V=2500 x-200 x^{2}+4 x^{3}$
(b) Find the maximum volume of the box, justifying your answer.

12. A window is in the shape of a rectangle surmounted by a semi-circle. The glass in the semi-circular part is stained glass which lets in one unit of light per m^{2} and the glass in the rectangular part is clear which lets in 2 units of light per m^{2}.
(a) If the perimeter of the window is 10 metres, show that $\mathrm{h}=\frac{10-2 \mathrm{x}-\pi \mathrm{x}}{2}$.
(b) Hence show that the amount of light, L , let in by the window is $L=20 x-4 x^{2}-\frac{3}{2} \pi x^{2}$.
(c) Find the value of x such that the design of the window

$2 x$ metres lets in the maximum amount of light.

