Stationary Points

1. Find the coordinates of the turning points of the curve with equation $y=x^{3}-3 x+2$ and determine their nature.
2. The diagram opposite shows part of the curve

$$
f(x)=6 x^{2}-x^{3}
$$

(a) Find the coordinates of the point A.
(b) Find the coordinates of the point B , the maximum turning point of the curve.

3. Find the coordinates of the turning points of the curve with equation $f(x)=x^{4}-4 x^{3}$ and determine their nature.
4. A curve has equation $y=x^{3}-3 x^{2}-9 x+12$.

Find the coordinates of the stationary points of this curve and determine their nature.
5. The diagram opposite shows the curve with equation $y=x^{3}-6 x^{2}+9 x$.
B has coordinates $(3,0)$.
Find the coordinates of A .

6. A curve has equation $\mathrm{y}=\mathrm{x}^{3}-27 \mathrm{x}+10$.

Find the coordinates of the turning points of this curve and determine their nature.
7. A curve has equation $y=2 x^{3}-x^{4}$.
(a) Find the coordinates of the points where this curve cuts the x-axis.
(b) Find the coordinates of the stationary points on this curve and determine their nature.
8. Find the coordinates of the turning points of the curve with equation $y=x^{3}-6 x^{2}-15 x+1$ and determine their nature.
9. The graph shows part of the curve $f(x)=2 x^{3}-7 x^{2}$.
(a) Find the coordinates of P .
(b) Find the x-coordinate of the minimum turning point Q .

10. $f(x)=12 x-x^{3}$.

Find the coordinates of the turning points of $\mathrm{f}(\mathrm{x})$ and determine their nature.
11. A curve has equation $y=2 x^{3}-7 x^{2}+4 x+4$. Find the turning points of this curve and determine their nature.
12. A curve has equation $f(x)=16 x^{3}+3 x^{4}$.

Find the coordinates of the turning points of $\mathrm{f}(\mathrm{x})$ and determine their nature.
13. The graph of $f(x)=2 x^{3}(4+3 x)$ is shown.
(a) Determine the coordinates of A.
(b) Find the coordinates of B.

